An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Precipitation Gauge Data
2.3. Satellite-based Precipitation Datasets
2.3.1. TMPA 3B42-v7
2.3.2. PERSIANN-CDR
2.3.3. CMORPH
2.3.4. Reanalysis Precipitation Product (Era-Interim)
2.4. Dynamic Bayesian Model Averaging (DBMA)
2.5. Performance Evaluation
3. Results
3.1. Data Normality and Box-Cox Transformation
3.2. Spatiotemporal Distribution of DBMA-MSPD Weights over Pakistan
3.3. Statistical Evaluation of DBMA-MSPD over Pakistan
3.4. Comparison of DBMA-MSPD with SMA-MSPD and Merging Members using GPGs Observations
4. Discussion
5. Conclusions
- (1)
- The MSPD has significantly improved the performance of individual SPPs. TMPA has higher accuracy as compared to other SPPs. The average improvements of MSPD across all climate regions with respect to TMPA are 45.26% (MBE), 30.99% (MAE), 30.1% (RMSE), 11.34% (CC), 9.53% (KGE score) and 8.86% (Theil’s U).
- (2)
- DBMA-MSPD has assigned higher weights to TMPA and PERSIANN-CDR followed by Era-Interim and CMORPH. The average weights of TMPA, PERSIANN-CDR, Era-Interim, and CMORPH across Pakistan during 2000–2015 are 0.32, 0.27, 0.22 and 0.19, respectively.
- (3)
- On regional scale, TMPA shows higher skills in glacial (0.32) and humid (0.37) regions as compared to PERSIANN-CDR with 0.27 (glacial) and 0.25 (humid), Era-Interim with 0.22 (glacial) and 0.20 (humid), and CMORPH with 0.20 (glacial) and 0.18 (humid). Moreover, arid and hyper-arid regions are dominated by PERSIANN-CDR and TMPA, with average weights of 0.29 and 0.31, respectively.
- (4)
- Spatial evaluation of MSPD depicted poorer performance in glacial and humid regions, which significantly improved towards arid and hyper-arid regions. Precipitation is overestimated in glacial and humid regions while underestimated in arid and hyper-arid regions. Maximum overestimation and underestimation are +1.89 mm/day and −1.14 mm/day, respectively. MAE and RMSE are ranging from 2.69–0.71 mm/day and 11.96–1.72 mm/day, respectively. Higher CC is observed in hyper-arid (0.84) while lower in glacial (0.41). The average CC across glacial, humid, arid, and hyper-arid regions are 0.55, 0.68, 0.77, and 0.81, respectively. The maximum (0.93) and minim (0.33) KGE score is observed in hyper-arid and glacial regions, indicating better performance of MSPD in hyper-arid region. Theil’s U is ranging from 0.70 (humid) to 0.37 (hyper-arid) with an average value of 0.53 across all climate regions.
- (5)
- The heavy precipitation seasons (pre-monsoon and monsoon) are dominated by TMPA (with average weights of 0.31 and 0.52) and Era-Interim (0.25 and 0.21). PERSIANN-CDR presented a higher performance in post-monsoon and winter seasons with average weights of 0.33 and 0.38, respectively. The significant seasonal variations of DBMA-MSPD weights indicate the necessity to use dynamic weights in merging the SPPs.
- (6)
- TMPA and PERSIANN-CDR accurately captured the precipitation trends in heavy precipitation seasons (pre-monsoon and monsoon) in glacial and humid regions. Similarly, in arid and hyper-arid regions PERSIANN-CDR and Era-Interim and TMPA and Era-Interim followed the heavy precipitation trends.
- (7)
- The ensemble spread and variation of DBMA-MSPD precipitation are evaluated using ensemble spread score (ESS) and standard deviation (SD), respectively. The ensemble spread is increasing with magnitude and intensity of the precipitation. Higher ESS with an average value of 11.38 mm/day was observed across the humid region during monsoon season. Lower ensemble spread is depicted in hyper-arid region during the winter season. The variation in precipitation showed elevation dependency, subjected to magnitude and intensity of precipitation, i.e., higher variation during monsoon season over high elevation regions. The maximum average SD values in glacial and humid regions are 12.58 mm/day and 11.43 mm/day.
- (8)
- The ESS and SD scores of SMA-MSPD showed relatively lower ensemble spread and variation in precipitation. Maximum spread with average value of 6.67 mm/day is observed during monsoon season in humid region, while a lower ESS score of 1.77 mm/day is observed in hyper-arid region during the winter season. Similarly, higher variation in SMA-MSPD precipitation (with SD average value of 6.79 mm/day) is depicted in glacial region during monsoon season, while minimum SD (2.12 mm/day) in hyper-arid region during winter season.
- (9)
- The skill score used to quantify the improvements of DBMA-MSPD against SMA-MSPD shows high improvements (40–50% for MBE, MAE and RMSE, and 20–25% for CC, KGE and Theil’s U) in glacial and humid region. However, relatively low improvements are observed across hyper-arid region (20–30% for MBE, MAE, and RMSE, and 10–15% for CC, KGE, and Theil’s U). Higher improvements in ensemble spread are observed in humid (40–50%) and glacial (35–40%) regions, while lower improvements in hyper-arid region (20–30%). Similarly, maximum and minimum improvements are observed in SD across glacial (35–45%) and hyper-arid (20–30%) regions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SPPs | Satellite precipitation products |
MSPD | Merged multi-Satellite Precipitation Dataset |
DBMA | Dynamic Bayesian Model Averaging |
DBMA-MSPD | DBMA-Merged multi-Satellite Precipitation Dataset |
GPGs | Ground Precipitation Gauges |
SMA | Simple Model Averaging |
SMA-MSPD | Simple Model Averaging-Merged multi-Satellite Precipitation Dataset |
DCBA-MSPD | Dynamic Clustered Bayesian Model Averaging–Merged multi-Satellite Precipitation Dataset |
References
- Kidd, C.; Levizzani, V.; Laviola, S. Quantitative precipitation estimation from Earth observation satellites. Rainfall State Sci. 2010, 191, 127–158. [Google Scholar]
- Kneis, D.; Chatterjee, C.; Singh, R. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi). Hydrol. Earth Syst. Sci. 2014, 18, 2493–2502. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Morrissey, M.M.; Bolvin, D.T.; Curtis, S.; Joyce, R.; McGavock, B.; Susskind, J. Global precipitation at one-degree daily resolution from multisatellite observations. J. Hydrometeorol. 2001, 2, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tian, J.; Huang, Y.; Chen, X.; Chen, S.; Duan, Z. Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China. Remote Sens. 2019, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Chen, Z.; Shen, Y.; Zhang, S.; Shi, R. Evaluation of satellite rainfall estimates over the Chinese Mainland. Remote Sens. 2014, 6, 11649–11672. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Yuan, H.; Liu, X.; Jiang, X. Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin. J. Hydrol. 2016, 536, 302–319. [Google Scholar] [CrossRef]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM day-1 IMERG and TMPA version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-real-time flood forecasting based on satellite precipitation products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Zhang, L.; Soe, K.M.W.; Ren, L.; Zhao, C.; Zhu, Y.; Jiang, S.; Liu, Y. Applications of TRMM-and GPM-era multiple-satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in myanmar. Remote Sens. 2019, 11, 140. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Fischer, T.; Zeng, Y.; Fraedrich, K. Evaluation of TRMM 3B43 precipitation data for drought monitoring in Jiangsu Province, China. Water 2016, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Yang, H.; Wang, Z.; Zhang, Z.; Li, Z. Drought evaluation with CMORPH satellite precipitation data in the Yellow River Basin by using gridded standardized precipitation evapotranspiration index. Remote Sens. 2019, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Su, Z.; Lv, J.; Liu, W.; Ma, M.; Peng, J.; Leng, G. A set of satellite-based near real-time meteorological drought monitoring data over China. Remote Sens. 2019, 11, 453. [Google Scholar] [CrossRef] [Green Version]
- Gehne, M.; Hamill, T.M.; Kiladis, G.N.; Trenberth, K.E. Comparison of global precipitation estimates across a range of temporal and spatial scales. J. Clim. 2016, 29, 7773–7795. [Google Scholar] [CrossRef]
- Gebregiorgis, A.S.; Hossain, F. How well can we estimate error variance of satellite precipitation data around the world? Atmos. Res. 2015, 154, 39–59. [Google Scholar] [CrossRef]
- Rahman, K.; Shang, S.; Shahid, M.; Li, J. Developing an ensemble precipitation algorithm from satellite products and its topographical and seasonal evaluations over Pakistan. Remote Sens. 2018, 10, 1835. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Li, Y.; Huang, Y.; Li, Y.; Hou, C.; Shi, X. Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa river basin in Northeast China. Atmos. Res. 2018, 207, 28–41. [Google Scholar] [CrossRef]
- Yi, L.; Zhang, W.; Wang, K. Evaluation of heavy precipitation simulated by the WRF model using 4D-Var data assimilation with TRMM 3B42 and GPM IMERG over the Huaihe River Basin, China. Remote Sens. 2018, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Ochoa, A.; Pineda, L.; Crespo, P.; Willems, P. Evaluation of TRMM 3B42 precipitation estimates and WRF retrospective precipitation simulation over the Pacific–Andean region of Ecuador and Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3179–3193. [Google Scholar] [CrossRef] [Green Version]
- Satgé, F.; Bonnet, M.-P.; Gosset, M.; Molina, J.; Lima, W.H.Y.; Zolá, R.P.; Timouk, F.; Garnier, J. Assessment of satellite rainfall products over the Andean plateau. Atmos. Res. 2016, 167, 1–14. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Al-Zahrani, M.A.; Sharif, H.O. Assessment of global precipitation measurement satellite products over Saudi Arabia. J. Hydrol. 2018, 559, 1–12. [Google Scholar] [CrossRef]
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the regional applicability of satellite precipitation products by ensemble algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Duan, Q.; Phillips, T.J. Bayesian estimation of local signal and noise in multimodel simulations of climate change. J. Geophys. Res. Atmos. 2010, 115, D18123. [Google Scholar] [CrossRef]
- Draper, D.W.; Newell, D.A.; Wentz, F.J.; Krimchansky, S.; Skofronick-Jackson, G.M. The global precipitation measurement (GPM) microwave imager (GMI): Instrument overview and early on-orbit performance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3452–3462. [Google Scholar] [CrossRef]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Long, D.; Li, C.; Han, Z.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef] [Green Version]
- Pereira Filho, A.J. Integrating gauge, radar and satellite rainfall. In Proceedings of the WWRP International Precipitation Working Group Workshop, CGMS-WMO, Monterey, CA, USA, 25–28 October 2004. [Google Scholar]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Vila, D.A.; De Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Hill, D.J. Assimilation of weather radar and binary ubiquitous sensor measurements for quantitative precipitation estimation. J. Hydroinformatics 2015, 17, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Li, H.; Hong, Y.; Xie, P.; Gao, J.; Niu, Z.; Kirstetter, P.; Yong, B. Variational merged of hourly gauge-satellite precipitation in China: Preliminary results. J. Geophys. Res. Atmos. 2015, 120, 9897–9915. [Google Scholar] [CrossRef]
- Long, Y.; Zhang, Y.; Ma, Q. A merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sens. 2016, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shao, Q. An improved statistical approach to merge satellite rainfall estimates and raingauge data. J. Hydrol. 2010, 385, 51–64. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.P.; Willems, P.; Onof, C. A review of radar-rain gauge data merging methods and their potential for urban hydrological applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- Sivasubramaniam, K.; Sharma, A.; Alfredsen, K. Merging radar and gauge information within a dynamical model combination framework for precipitation estimation in cold climates. Environ. Model. Softw. 2019, 119, 99–110. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Zhang, Y.; Verbist, K.M. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements—A case study in Chile. J. Geophys. Res. Atmos. 2017, 122, 5267–5284. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Liang, S.; Yang, H.; Zhou, G. Estimation of clear-sky land surface longwave radiation from MODIS data products by merging multiple models. J. Geophys. Res. Atmos. 2012, 117, D22107. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Hong, Y.; Yu, J.; Pan, Y.; Chen, Z.; Saharia, M. Uncertainty analysis of five satellite-based precipitation products and evaluation of three optimally merged multi-algorithm products over the Tibetan Plateau. Int. J. Remote Sens. 2014, 35, 6843–6858. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, W.; Xia, J.; Fisher, J.B.; Dong, W.; Zhang, X.; Liang, S.; Ye, A.; Cai, W.; Feng, J. Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. J. Hydrol. 2015, 528, 537–549. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Hong, Y.; Fisher, J.B.; Zhang, N.; Chen, J.; Cheng, J.; Zhao, S.; Zhang, X. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance, meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [Google Scholar] [CrossRef]
- Duan, Q.; Ajami, N.K.; Gao, X.; Sorooshian, S. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour. 2007, 30, 1371–1386. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Ren, L.; Xu, C.-Y.; Liu, S.; Yuan, F.; Yang, X. Quantifying multi-source uncertainties in multi-model predictions using the Bayesian model averaging scheme. Hydrol. Res. 2018, 49, 954–970. [Google Scholar] [CrossRef]
- Roy, T.; Serrat-Capdevila, A.; Gupta, H.; Valdes, J. A platform for probabilistic multimodel and multiproduct streamflow forecasting. Water Resour. Res. 2017, 53, 376–399. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Liu, Q.; Hong, Y. Error analysis of ensemble multi-satellite precipitation datasets over the Tibetan Plateau. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4684–4687. [Google Scholar]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y.; Khan, Z. Application of Dynamic Clustered Bayesian Model Averaging (DCBA) algorithm for merging multi-satellite precipitation products over Pakistan. J. Hydrometeorol. 2019. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Performance assessment of SM2RAIN-CCI and SM2RAIN-ASCAT precipitation products over Pakistan. Remote Sens. 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z. Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite Precipitation Analysis (TMPA) near-real-time and research products. Atmos. Res. 2015, 153, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Pai, D. Error characterization of TRMM Multisatellite Precipitation Analysis (TMPA-3B42) products over India for different seasons. J. Hydrol. 2015, 529, 1302–1312. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, D.P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hamill, T.M. Comments on “Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging”. Mon. Weather Rev. 2007, 135, 4226–4230. [Google Scholar] [CrossRef]
- Wilson, L.J.; Beauregard, S.; Raftery, A.E.; Verret, R. Calibrated surface temperature forecasts from the Canadian ensemble prediction system using Bayesian model averaging. Mon. Weather Rev. 2007, 135, 1364–1385. [Google Scholar] [CrossRef] [Green Version]
- Sloughter, J.M.L.; Raftery, A.E.; Gneiting, T.; Fraley, C. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Weather Rev. 2007, 135, 3209–3220. [Google Scholar] [CrossRef]
- Ebert, E.E. Methods for verifying satellite precipitation estimates. In Measuring Precipitation from Space; Springer: Berlin/Heidelberg, Germany, 2007; pp. 345–356. [Google Scholar]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification; SAGE Publications Sage CA: Los Angeles, CA, USA, 1973. [Google Scholar]
- Zhu, Y. Ensemble forecast: A new approach to uncertainty and predictability. Adv. Atmos. Sci. 2005, 22, 781–788. [Google Scholar] [CrossRef]
- Buizza, R.; Houtekamer, P.; Pellerin, G.; Toth, Z.; Zhu, Y.; Wei, M. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 2005, 133, 1076–1097. [Google Scholar] [CrossRef]
- Jarque, C.M.; Bera, A.K. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ. Lett. 1980, 6, 255–259. [Google Scholar] [CrossRef]
- Fu, Y.; Xia, J.; Yuan, W.; Xu, B.; Wu, X.; Chen, Y.; Zhang, H. Assessment of multiple precipitation products over major river basins of China. Theor. Appl. Climatol. 2016, 123, 11–22. [Google Scholar] [CrossRef]
- Renard, B. A Bayesian hierarchical approach to regional frequency analysis. Water Resour. Res. 2011, 47, W11513. [Google Scholar] [CrossRef] [Green Version]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.I.; Hong, Y.; Gourley, J.J.; Khattak, M.U.K.; Yong, B.; Vergara, H.J. Evaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan. Adv. Space Res. 2014, 54, 670–684. [Google Scholar] [CrossRef]
- Hobouchian, M.P.; Salio, P.; Skabar, Y.G.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmos. Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Turk, F.J.; Petersen, W.; Hou, A.Y.; García-Ortega, E.; Machado, L.A.; Angelis, C.F.; Salio, P.; Kidd, C.; Huffman, G.J. Global precipitation measurement: Methods, datasets and applications. Atmos. Res. 2012, 104, 70–97. [Google Scholar] [CrossRef]
- Massari, C.; Camici, S.; Ciabatta, L.; Brocca, L. Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: State update versus rainfall correction. Remote Sens. 2018, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- Beighley, R.E.; Ray, R.; He, Y.; Lee, H.; Schaller, L.; Andreadis, K.; Durand, M.; Alsdorf, D.; Shum, C. Comparing satellite derived precipitation datasets using the Hillslope River Routing (HRR) model in the Congo River Basin. Hydrol. Process. 2011, 25, 3216–3229. [Google Scholar] [CrossRef]
- Scheel, M.; Rohrer, M.; Huggel, C.; Santos Villar, D.; Silvestre, E.; Huffman, G. Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2011, 15, 2649–2663. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Connor, S.J.; Ceccato, P. Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 193–204. [Google Scholar]
- Bitew, M.M.; Gebremichael, M. Evaluation through independent measurements: Complex terrain and humid tropical region in Ethiopia. In Satellite Rainfall Applications for Surface Hydrology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 205–214. [Google Scholar]
- Hong, Y.; Gochis, D.; Cheng, J.-T.; Hsu, K.-L.; Sorooshian, S. Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J. Hydrometeorol. 2007, 8, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Amlien, J. Remote sensing of snow with passive microwave radiometers—A review of current algorithms. Report 2008, 1019, 52. [Google Scholar]
- Villarini, G.; Krajewski, W.F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Nasrollahi, N.; Habib, E. Accounting for uncertainties of the TRMM satellite estimates. Remote Sens. 2009, 1, 606–619. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Gebremichael, M. Estimating actual rainfall from satellite rainfall products. Atmos. Res. 2009, 92, 481–488. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Xu, C.-Y. Assessing the performance of satellite-based precipitation products and its dependence on topography over Poyang Lake basin. Theor. Appl. Climatol. 2014, 115, 713–729. [Google Scholar] [CrossRef]
- Tapiador, F.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G.; Kidd, C.; Kucera, P.; Kummerow, C.; Masunaga, H.; Petersen, W. Global precipitation measurements for validating climate models. Atmos. Res. 2017, 197, 1–20. [Google Scholar] [CrossRef]
- Hussain, Y.; Satgé, F.; Hussain, M.B.; Martinez-Carvajal, H.; Bonnet, M.-P.; Cárdenas-Soto, M.; Roig, H.L.; Akhter, G. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan. Theor. Appl. Climatol. 2018, 131, 1119–1132. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Athar, H. Validation of satellite based precipitation over diverse topography of Pakistan. Atmos. Res. 2018, 201, 247–260. [Google Scholar] [CrossRef]
Statistical Index | Equation | Perfect Value |
---|---|---|
Mean Bias Error (MBE) | 0 | |
Mean Absolute Error (MAE) | 0 | |
Root Mean Square Error (RMSE) | 0 | |
Correlation Coefficient (CC) | 1 | |
KGE Score | where , | 1 |
Theil’s U | 0 | |
Ensemble spread score | 0 | |
Standard deviation |
Season | Climate Region | ESS Mean | ESS Median | SD Mean | SD Median | ||||
---|---|---|---|---|---|---|---|---|---|
DBMA | SMA | DBMA | SMA | DBMA | SMA | DBMA | SMA | ||
Pre-Monsoon | Glacial | 8.80 | 4.86 | 8.71 | 4.84 | 11.35 | 6.56 | 11.44 | 6.50 |
Humid | 9.26 | 6.60 | 8.94 | 6.49 | 10.42 | 6.25 | 10.47 | 6.23 | |
Arid | 3.97 | 2.58 | 3.69 | 2.67 | 4.21 | 2.73 | 3.98 | 2.69 | |
Hyper-arid | 3.03 | 1.90 | 2.99 | 1.94 | 3.63 | 2.25 | 3.55 | 2.33 | |
Monsoon | Glacial | 10.26 | 5.33 | 9.61 | 5.36 | 12.58 | 6.79 | 12.47 | 6.75 |
Humid | 11.38 | 6.67 | 11.25 | 6.60 | 11.43 | 6.57 | 11.58 | 6.63 | |
Arid | 3.76 | 2.27 | 3.50 | 2.24 | 5.95 | 3.92 | 5.74 | 3.95 | |
Hyper-arid | 2.67 | 1.81 | 1.92 | 1.85 | 4.48 | 2.91 | 4.41 | 2.98 | |
Post-Monsoon | Glacial | 9.41 | 5.12 | 9.20 | 5.10 | 10.80 | 6.33 | 10.92 | 6.41 |
Humid | 8.14 | 4.67 | 7.86 | 4.56 | 9.24 | 5.29 | 9.46 | 5.28 | |
Arid | 4.14 | 2.58 | 3.95 | 2.60 | 4.35 | 2.83 | 4.10 | 2.88 | |
Hyper-arid | 3.13 | 1.95 | 3.02 | 2.02 | 3.61 | 2.33 | 3.53 | 2.38 | |
Winter | Glacial | 8.79 | 4.87 | 8.75 | 4.75 | 10.61 | 6.07 | 10.70 | 6.03 |
Humid | 8.67 | 4.73 | 8.43 | 4.80 | 8.69 | 4.93 | 8.46 | 4.92 | |
Arid | 3.99 | 2.48 | 3.71 | 2.51 | 4.19 | 2.68 | 3.95 | 2.72 | |
Hyper-arid | 2.75 | 1.77 | 2.88 | 1.80 | 3.45 | 2.12 | 3.53 | 2.10 |
Zone | SPPs/MSPD | MBE (mm/day) | MAE (mm/day) | RMSE (mm/day) | CC | KGE Score | Theil’s U |
---|---|---|---|---|---|---|---|
Glacial zone | DBMA-MSPD | 0.99 | 1.96 | 8.80 | 0.55 | 0.36 | 0.53 |
SMA-MSPD | 1.85 | 2.66 | 10.18 | 0.48 | 0.32 | 0.55 | |
TMPA | 1.91 | 2.79 | 10.83 | 0.45 | 0.31 | 0.56 | |
Era-Interim | 2.27 | 3.25 | 11.39 | 0.38 | 0.28 | 0.64 | |
PERSIANN-CDR | 2.14 | 3.01 | 11.01 | 0.42 | 0.27 | 0.60 | |
CMORPH | 2.51 | 3.60 | 11.87 | 0.34 | 0.25 | 0.67 | |
Humid zone | DBMA-MSPD | 0.78 | 1.75 | 8.23 | 0.68 | 0.51 | 0.44 |
SMA-MSPD | 1.47 | 2.64 | 10.99 | 0.61 | 0.47 | 0.46 | |
TMPA | 1.54 | 2.80 | 11.62 | 0.59 | 0.46 | 0.48 | |
Era-Interim | 1.86 | 3.34 | 11.58 | 0.52 | 0.43 | 0.54 | |
PERSIANN-CDR | 1.65 | 3.05 | 11.32 | 0.56 | 0.40 | 0.51 | |
CMORPH | 2.04 | 3.65 | 11.84 | 0.49 | 0.38 | 0.58 | |
Arid zone | DBMA-MSPD | −0.25 | 1.52 | 4.62 | 0.78 | 0.67 | 0.41 |
SMA-MSPD | −0.32 | 2.87 | 6.79 | 0.73 | 0.63 | 0.44 | |
TMPA | −0.36 | 3.15 | 7.28 | 0.71 | 0.62 | 0.46 | |
Era-Interim | −0.53 | 3.65 | 7.91 | 0.63 | 0.58 | 0.54 | |
PERSIANN-CDR | 0.46 | 3.40 | 7.64 | 0.67 | 0.55 | 0.50 | |
CMORPH | −0.62 | 3.91 | 8.18 | 0.61 | 0.53 | 0.57 | |
Hyper-Arid zone | DBMA-MSPD | −0.71 | 1.23 | 3.83 | 0.80 | 0.86 | 0.41 |
SMA-MSPD | −1.43 | 2.16 | 5.72 | 0.76 | 0.81 | 0.44 | |
TMPA | −1.51 | 2.32 | 5.97 | 0.76 | 0.80 | 0.46 | |
Era-Interim | −2.00 | 2.82 | 6.53 | 0.68 | 0.77 | 0.53 | |
PERSIANN-CDR | −1.76 | 2.57 | 6.24 | 0.72 | 0.75 | 0.50 | |
CMORPH | −2.25 | 3.04 | 6.84 | 0.65 | 0.71 | 0.57 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ur Rahman, K.; Shang, S.; Shahid, M.; Wen, Y. An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan. Remote Sens. 2020, 12, 10. https://doi.org/10.3390/rs12010010
Ur Rahman K, Shang S, Shahid M, Wen Y. An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan. Remote Sensing. 2020; 12(1):10. https://doi.org/10.3390/rs12010010
Chicago/Turabian StyleUr Rahman, Khalil, Songhao Shang, Muhammad Shahid, and Yeqiang Wen. 2020. "An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan" Remote Sensing 12, no. 1: 10. https://doi.org/10.3390/rs12010010
APA StyleUr Rahman, K., Shang, S., Shahid, M., & Wen, Y. (2020). An Appraisal of Dynamic Bayesian Model Averaging-based Merged Multi-Satellite Precipitation Datasets Over Complex Topography and the Diverse Climate of Pakistan. Remote Sensing, 12(1), 10. https://doi.org/10.3390/rs12010010