A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Field Measurements
2.2.1. Canopy Spectra Measurements
2.2.2. Leaf Area Index Acquisition
2.3. Sentinel-2 Images Acquisition
2.4. Vegetation Indices Selected in This Research
2.4.1. Vegetation Indices of Normalized Difference
2.4.2. Vegetation Indices of Improving the Linearity
2.4.3. Vegetation Indices of Soil-Line
2.4.4. Vegetation Indices of Triangular Form
2.4.5. Vegetation Indices Based on the Shapes of the Reflectance Curves
2.5. New Vegetation Index Proposed in This Research
2.6. Indices Calculation and Statistics Analysis
3. Results
3.1. Relationship between VIs and LAI Using Field Measured ASD Data
3.2. Relationship between VIs and LAI Using Sentinel-2 Data
3.3. Possibility of Mitigating Saturation Effect with LAI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.M.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 2010, 15, 421–429. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K.; Dwyer, J.D.; Plant, A.B.; Bhowmik, A. A Case Study of Improving Yield Prediction and Sulfur Deficiency Detection Using Optical Sensors and Relationship of Historical Potato Yield with Weather Data in Maine. Sensors 2017, 17, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ramakrishna, R.; Nemani, R.; Running, S.W. Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 2002, 35, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Tol, C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosci. Discuss. 2009, 6, 3109–3129. [Google Scholar]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study. Remote Sens. 2018, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Envrion. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C.M. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S. Retrieving leaf area index with a neural network method: Simulation and validation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2052–2062. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F.; Leroy, M.; Hautecœur, O.; Bacour, C.; Prevol, L.; Bruguier, N. Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data. Agronomie 2002, 22, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Upreti, D.H.W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A Comparison of Hybrid Machine Learning Algorithms for the Retrieval of Wheat Biophysical Variables from Sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.B.J.; Pan, Y.; Ganguly, S.; Anav, A.; Xu, L.; Samanta, A.; Piao, S.; Nemani, R.R.; Myneni, R.B. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927–948. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Dong, Y. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, J.; Park, T.; Liu, Q.; Zeng, Y.; Yin, G.; Myneni, R.B. An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sens. Environ. 2018, 209, 134–151. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Xiang, Y.; Zhao, X.; Song, J. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived from MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Goel, N.S. Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev. 1988, 4, 1–212. [Google Scholar] [CrossRef]
- Swain, P.H.; Davis, S.M. Remote Sensing: The Quantitative Approach; McGraw-Hill Publishing Company, Inc.: New York, NY, USA, 1978. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W. Monitoring vegetation systems in the great plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.K.; Abkar, A.A. Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position. Int. J. Remote Sens. 2009, 30, 6199–6218. [Google Scholar] [CrossRef]
- Salas, E.; Henebry, G. A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the Moment Distance Method. Remote Sens. 2014, 6, 20–41. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, J.L.; Yang, L. A preliminary study on mechanism of LAI inversion saturation. ISPRS—International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2012, 39, 77–81. [Google Scholar]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munden, R.; Curran, P.J.; Catt, J.A. The relationship between red edge and chlorophyll concentration in the Broadbalk winter wheat experiment at Rothamsted. Int. J. Remote Sens. 1994, 15, 705–709. [Google Scholar] [CrossRef]
- Curran, P.J.; Windham, W.R.; Gholz, H.L. Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiol. 1995, 15, 33–48. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; De Jong, S.M.; Epema, G.F.; Van Der Meer, F.D.; Bakker, W.H.; Skidmore, A.K.; Scholte, K.H. Derivation of the red edge index using the MERIS standard band setting. Int. J. Remote Sens. 2002, 23, 3169–3184. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Boissard, P.; Pointel, J.G.; Huet, P. Reflectance, green leaf area index and ear hydric status of wheat from anthesis until maturity. Int. J. Remote Sens. 1993, 14, 2713–2729. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- White, J.D.; Running, S.W.; Nemani, R.; Keane, R.E.; Ryan, K.C. Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems. Can. J. For. Res. 1997, 27, 1714–1727. [Google Scholar] [CrossRef]
- Clevers, J.L.; Kooistra, L.; Van Den Brande, M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.P.; Rees, R.M.; Williams, M. The Value of Sentinel-2 Spectral Bands for the Assessment of Winter Wheat Growth and Development. Remote Sens. 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
- Berterretche, M.; Hudak, A.T.; Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Dungan, J. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sens. Environ. 2005, 96, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Thomas, J.R.; Gausman, H.W. Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops1. Agron. J. 1977, 69, 799–802. [Google Scholar] [CrossRef]
- Kattenborn, T.; Schiefer, F.; Zarco-Tejada, P.; Schmidtlein, S. Advantages of retrieving pigment content mu g/cm versus concentration % from canopy reflectance. Remote Sens. Environ. 2019, 230, 111195. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; Clevers, J.G.P.W.; De Jong, S.M.; Bakker, W.H.; Epema, G.F.; Skidmore, A.K.; Scholte, K. Meriland: Meris Potential for Land Applications; BCRS: Wolverhampton, UK, 2000. [Google Scholar]
- Clevers, J. The use of imaging spectrometry for agricultural applications. ISPRS J. Photogramm. Remote Sens. 1999, 54, 299–304. [Google Scholar] [CrossRef]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Int. Jt. Conf. Artif. Intell. 1995, 14, 1137–1145. [Google Scholar]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Xie, Q.; Huang, W.; Zhang, B.; Chen, P.; Song, X.; Pascucci, S.; Pignatti, S.; Laneve, G.; Dong, Y. Estimating Winter Wheat Leaf Area Index from Ground and Hyperspectral Observations Using Vegetation Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 771–780. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
Index | Description | Formula | Reference |
---|---|---|---|
DVI | Difference vegetation index | [25] | |
SR | Simple ratio | [27] | |
NDVI | Normalized difference vegetation index | [26] | |
RDVI | Renormalized difference vegetation index | [28] | |
MSR | Modified simple ratio | [14] | |
EVI | Enhanced vegetation index | [29] | |
SAVI | Soil-adjusted vegetation index | [11] | |
OSAVI | Optimized soil-adjusted vegetation index | [30] | |
TVI | Triangular vegetation index | [6] | |
MTVI1 | Modified triangular vegetation index 1 | [3] | |
MTVI2 | Modified triangular vegetation index 2 | [3] | |
REIPlinear | The linear interpolation of red edge inflection point | [31] | |
MDI | Moment distance index | [32] |
Index | Rank | R2 | RMSE | MAE | p-Value |
---|---|---|---|---|---|
DVI | 8 | 0.57 | 1.41 | 1.17 | ** |
SR | 12 | 0.39 | 1.59 | 1.32 | * |
NDVI | 10 | 0.56 | 2.06 | 1.75 | ** |
RDVI | 4 | 0.60 | 1.60 | 1.30 | ** |
MSR | 11 | 0.49 | 1.83 | 1.48 | * |
EVI | 3 | 0.60 | 1.12 | 0.95 | ** |
SAVI | 6 | 0.59 | 1.61 | 1.30 | ** |
OSAVI | 9 | 0.57 | 4.43 | 4.16 | ** |
TVI | 5 | 0.59 | 1.32 | 1.09 | ** |
MTVI1 | 7 | 0.58 | 1.36 | 1.15 | ** |
MTVI2 | 2 | 0.60 | 1.82 | 1.51 | ** |
TTVI | 1 | 0.62 | 1.28 | 1.10 | ** |
REIPlinear | 14 | 0.07 | 1.63 | 1.34 | Not significant |
MDI(600–750 nm) | 13 | 0.19 | 1.78 | 1.49 | ** |
MDI(720–730 nm) | 15 | 0.004 | 1.75 | 1.42 | Not significant |
Index | Rank | R2 | RMSE | MAE | p-Value |
---|---|---|---|---|---|
DVI | 10 | 0.43 | 1.30 | 1.10 | * |
SR | 11 | 0.39 | 1.28 | 1.08 | * |
NDVI | 4 | 0.51 | 1.21 | 1.02 | * |
RDVI | 8 | 0.44 | 1.29 | 1.06 | * |
MSR | 13 | 0.36 | 1.31 | 1.10 | * |
EVI | 2 | 0.55 | 1.16 | 0.93 | * |
SAVI | 12 | 0.38 | 1.39 | 1.15 | * |
OSAVI | 6 | 0.47 | 1.25 | 1.04 | * |
TVI | 3 | 0.52 | 1.22 | 1.02 | * |
MTVI1 | 5 | 0.49 | 1.26 | 1.08 | * |
MTVI2 | 7 | 0.47 | 1.28 | 1.08 | * |
TTVI | 1 | 0.59 | 1.15 | 0.99 | ** |
REIPlinear | 9 | 0.44 | 1.22 | 0.98 | *** |
MDI (600–750 nm) | 15 | 0.24 | 1.43 | 1.17 | ** |
MDI (720–730 nm) | 14 | 0.27 | 1.42 | 1.15 | *** |
Index | LAI < 4 | LAI > 4 | ||||
---|---|---|---|---|---|---|
R2 | RMSE | p-Value | R2 | RMSE | p-Value | |
DVI | 0.52 | 0.49 | *** | 0.35 | 0.86 | *** |
SR | 0.58 | 0.46 | *** | 0.21 | 0.96 | * |
NDVI | 0.52 | 0.49 | *** | 0.23 | 0.94 | ** |
RDVI | 0.54 | 0.48 | *** | 0.38 | 0.84 | *** |
MSR | 0.58 | 0.46 | *** | 0.22 | 0.95 | ** |
EVI | 0.50 | 0.50 | *** | 0.38 | 0.84 | *** |
SAVI | 0.54 | 0.48 | *** | 0.40 | 0.83 | *** |
OSAVI | 0.54 | 0.48 | *** | 0.40 | 0.83 | *** |
TVI | 0.40 | 0.55 | ** | 0.26 | 0.92 | ** |
MTVI1 | 0.50 | 0.50 | *** | 0.35 | 0.87 | *** |
MTVI2 | 0.55 | 0.48 | *** | 0.38 | 0.84 | *** |
TTVI | 0.78 | 0.33 | *** | 0.50 | 0.76 | *** |
REIPlinear | 0.27 | 0.63 | ** | 0.26 | 0.92 | ** |
MDI(600–750 nm) | 0.50 | 0.52 | *** | 0.42 | 0.81 | *** |
MDI(720–730 nm) | 0.48 | 0.53 | *** | 0.36 | 0.86 | *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, N.; Huang, W.; Xie, Q.; Shi, Y.; Ye, H.; Dong, Y.; Wu, M.; Sun, G.; Jiao, Q. A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sens. 2020, 12, 16. https://doi.org/10.3390/rs12010016
Xing N, Huang W, Xie Q, Shi Y, Ye H, Dong Y, Wu M, Sun G, Jiao Q. A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sensing. 2020; 12(1):16. https://doi.org/10.3390/rs12010016
Chicago/Turabian StyleXing, Naichen, Wenjiang Huang, Qiaoyun Xie, Yue Shi, Huichun Ye, Yingying Dong, Mingquan Wu, Gang Sun, and Quanjun Jiao. 2020. "A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index" Remote Sensing 12, no. 1: 16. https://doi.org/10.3390/rs12010016
APA StyleXing, N., Huang, W., Xie, Q., Shi, Y., Ye, H., Dong, Y., Wu, M., Sun, G., & Jiao, Q. (2020). A Transformed Triangular Vegetation Index for Estimating Winter Wheat Leaf Area Index. Remote Sensing, 12(1), 16. https://doi.org/10.3390/rs12010016