Orbital Lifetime (2008–2017) Radiometric Calibration and Evaluation of the HJ-1B IRS Thermal Infrared Band
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Data Sources
2.1.1. Cross-Calibration Site
2.1.2. Reference Data
2.1.3. Image Pairs Matching and Statistics
2.2. Methods
2.2.1. Image Preprocessing
2.2.2. TOA Radiance Calibration and Coefficients Regression
- Obtain the DN of IRS B08, the radiance of MODIS B31 and B32 and the view zenith angles of ROI area from near-simultaneous image pairs;
- Convert the TOA radiance of MODIS B31, B32 into TOA temperature according to “temperature-radiance” lookup table and obtain cross coefficients, , according to “cross coefficient” lookup table;
- Calculate the TOA temperature of IRS B08 using Equation (1) and convert to TOA radiance through the inverse of the Planck function or the “temperature-radiance” lookup table.
- Perform coefficients regression. The data obtained from the above process (DN and TOA radiance of IRS B08) were regressed using a linear equation as:
2.2.3. Field Experiment
3. Results
3.1. Annual Calibration Coefficients
3.2. Coefficients Validation
3.2.1. On-board Validation
3.2.2. Vicarious Comparison
3.2.3. Image Cross-Comparison
3.3. Relatively Low/Normal/High Radiance Variation
3.4. Channel Response Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Du, T.; Yuan, G.; Wang, L.; Sun, X.; Sun, R. Comparison of Remotely Sensed Evapotranspiration Models Over Two Typical Sites in an Arid Riparian Ecosystem of Northwestern China. Remote Sens. 2020, 12, 1434. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P. Thermal Remote Sensing of Drought and Evapotranspiration. EOS Trans. 2008, 89, 233–234. [Google Scholar] [CrossRef]
- Van Doninck, J.; Peters, J.; De Baets, B.; De Clercq, E.M.; Ducheyne, E.; Verhoest, N.E.C. The potential of multitemporal Aqua and Terra MODIS apparent thermal inertia as a soil moisture indicator. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 934–941. [Google Scholar] [CrossRef]
- Van der Meer, F.; Hecker, C.; van Ruitenbeek, F.; van der Werff, H.; de Wijkerslooth, C.; Wechsler, C. Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 255–269. [Google Scholar] [CrossRef]
- Romaguera, M.; Vaughan, R.G.; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C.A.; van der Meer, F.D. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sens. Environ. 2018, 204, 534–552. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Regional Lithological Mapping Using ASTER-TIR Data: Case Study for the Tibetan Plateau and the Surrounding Area. Geosciences 2016, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Ninomiya, Y.; Fu, B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Tang, H.; Li, Z.L. Quantitative Remote Sensing in Thermal Infrared; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Thome, K.; Ara, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F.; Sakuma, H.; Slater, P.; et al. ASTER Preflight and Inflight Calibration and the Validation of Level 2 Products. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1161–1172. [Google Scholar] [CrossRef]
- Tonooka, H.; Palluconi, F.D.; Hook, S.J.; Matsunaga, T. Vicarious calibration of ASTER thermal infrared bands. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2733–2746. [Google Scholar] [CrossRef]
- Butler, J.J.; Choi, T.; Xiong, J.; Angal, A.; Chander, G.; Xiong, X. Radiometric cross-calibration of the Terra MODIS and Landsat 7 ETM+ using an invariant desert site. In Proceedings of the Earth Observing Systems XIII, San Diego, CA, USA, 11–13 August 2008. [Google Scholar]
- Chander, G.; Angal, A.; Choi, T.; Xiong, X. Radiometric Cross-Calibration of EO-1 ALI with L7 ETM+ and Terra MODIS Sensors Using Near-Simultaneous Desert Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 386–399. [Google Scholar] [CrossRef]
- Teillet, P.M.; Markham, B.L.; Irish, R.R. Landsat cross-calibration based on near simultaneous imaging of common ground targets. Remote Sens. Environ. 2006, 102, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Wenny, B.N.; Wu, A.; Barnes, W.L.; Salomonson, V.V. Aqua MODIS Thermal Emissive Band On-Orbit Calibration, Characterization, and Performance. IEEE Trans. Geosci. Remote Sens. 2009, 47, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.F.; Saleous, N.Z. Calibration of NOAA16 AVHRR over a desert site using MODIS data. Remote Sens. Environ. 2006, 105, 214–220. [Google Scholar] [CrossRef]
- Li, J.; Gu, X.; Yu, T.; Li, X.; Gao, H.; Liu, L.; Xu, H. A twin-channel difference model for cross-calibration of thermal infrared band. Sci. China Technol. Sci. 2012, 55, 2048–2056. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, C.; Li, Q.; Li, J. Chinese HJ-1A/B satellites and data characteristics. Sci. China Earth Sci. 2011, 53, 51–57. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, S.J.; Zhu, L. Three algorithms of sea surface temperature inversion of Daya Bay based on environmental star HJ_1B data. J. East China Inst. Technol. 2013, 36, 88–92. [Google Scholar]
- Zhou, J.; Zhan, W.; Hu, D.; Zhao, X. Improvement of mono-window algorithm for retrieving land surface temperature from HJ-1B satellite data. Chin. Geogr. Sci. 2010, 20, 123–131. [Google Scholar] [CrossRef]
- Ouyang, X.; Jia, L.; Pan, Y.; Hu, G. Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data. Remote Sens. 2014, 7, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Man Sing, W.; Jinxin, Y.; Nichol, J.; Qihao, W.; Menenti, M.; Chan, P.W. Modeling of Anthropogenic Heat Flux Using HJ-1B Chinese Small Satellite Image: A Study of Heterogeneous Urbanized Areas in Hong Kong. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1466–1470. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Zhou, J.; Huang, H.; Wang, L. Detection of the urban heat island in Beijing using HJ-1B satellite imagery. Sci. China Earth Sci. 2011, 53, 67–73. [Google Scholar] [CrossRef]
- Sheng, L.; Lu, D.; Huang, J. Impacts of land-cover types on an urban heat island in Hangzhou, China. Int. J. Remote Sens. 2015, 36, 1584–1603. [Google Scholar] [CrossRef]
- Wu, H.; Ye, L.P.; Shi, W.Z.; Clarke, K.C. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 67–78. [Google Scholar] [CrossRef]
- Lin, L.; Meng, Y.; Yue, A.; Yuan, Y.; Liu, X.; Chen, J.; Zhang, M.; Chen, J. A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data. Remote Sens. 2016, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wang, L.; Zhou, Y.; Wang, S.; Zhu, J.; Wang, F. A comparison of forest fire burned area indices based on HJ satellite data. Nat. Hazards 2015, 81, 971–980. [Google Scholar] [CrossRef]
- Ban, Y.; Jacob, A. Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1998–2006. [Google Scholar] [CrossRef]
- Lu, S.; Wu, B.; Yan, N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Barsi, J.A.; Hook, S.J.; Schott, J.R.; Raqueno, N.G.; Markham, B.L. Landsat-5 Thematic Mapper Thermal Band Calibration Update. IEEE Geosci. Remote Sens. Lett. 2007, 4, 552–555. [Google Scholar] [CrossRef]
- Wang, Y.; Ientilucci, E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sens. 2018, 10, 589. [Google Scholar] [CrossRef] [Green Version]
- Tonooka, H. Inflight straylight analysis for ASTER thermal infrared bands. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2752–2762. [Google Scholar] [CrossRef]
- Chen, G.; Gao, X.; Zhang, S.; Chen, Q.; Tang, L.; Lan, Y. Development of an automatic calibration device for high-accuracy low temperature thermometers. Sci. China Technol. Sci. 2010, 53, 2404–2407. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Li, Z.L.; Wanga, R.; Salomonsonb, V.V.; Yvesc, A.; Bossenoc, R.; Hanocq, J.F. Preliminary estimate of calibration of the moderate resolution imaging spectroradioeter thermal infrared data using Lake Titicaca. Remote Sens. Environ. 2002, 80, 497–515. [Google Scholar] [CrossRef]
- Xiong, X.; Sun, J.; Barnes, W.; Salomonson, V.; Esposito, J.; Erives, H.; Guenther, B. Multiyear On-Orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1790–1803. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Andersonb, G.P.; Bernsteina, L.S.; Acharya, P.K.; Dothea, H.; Matthew, M.W.; Adler-Golden, S.M.; Chetwynd, J.H.; Richtsmeiera, S.C.; Pukalib, B.; et al. MODTRAN4 radiative transfer modeling for atmospheric correction. In Proceedings of theOptical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, Denver, CO, USA, 19–21 July 1999. [Google Scholar]
Band Pass (μm) | Spatial Resolution (m) | Signal Quantization Levels (bits) | NEΔT (K) | |
---|---|---|---|---|
IRS B08 | 10.50–12.50 | 300 | 10 | 0.38 |
MODIS B31 | 10.78–11.28 | 1000 | 12 | 0.05 |
MODIS B32 | 11.77–12.27 | 1000 | 12 | 0.05 |
Number * | Date | Site | Longitude | Latitude |
---|---|---|---|---|
1 | 26 October 2013 | Ningde, China | 120.31° E | 27.04° N |
2 | 12 June 2014 | Hongyanhe, China | 121.46° E | 39.78° N |
3 | 28 January 2015 | Yangjiang, China | 112.17° E | 21.42° N |
4 | 14 October 2016 | Daya Bay, China | 114.32° E | 22.36° N |
4 | 21 October 2017 | Daya Bay, China | 114.32° E | 22.36° N |
Cross-Calibration Coefficients | Official Coefficients | ||||
---|---|---|---|---|---|
Year | g () | b | R2 | g () | b |
2008 | 62.293 | −37.409 | 0.9781 | 61.472 | −44.598 |
2009 | 61.460 | −28.509 | 0.9937 | 59.421 | −25.441 |
2010 | 57.548 | 2.755 | 0.9951 | 60.713 | −25.441 |
2011 | 53.896 | 31.557 | 0.9916 | 56.277 | 12.626 |
2012 | 52.385 | 41.471 | 0.9817 | 47.744 | 70.185 |
2013 | 51.964 | 46.128 | 0.9891 | ||
2014 | 54.680 | 23.084 | 0.9753 | ||
2015 | 53.619 | 36.294 | 0.9865 | ||
2016 | 51.983 | 45.359 | 0.9913 | ||
2017 | 53.084 | 39.602 | 0.9875 |
Zenith | b | R2 | |
---|---|---|---|
Within 30° | 54.142 | 29.944 | 0.9949 |
Within 40° | 53.879 | 31.080 | 0.9938 |
Within 50° | 53.896 | 31.557 | 0.9916 |
All angles | 52.329 | 41.789 | 0.9792 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Li, J.; Han, Q.; Zhu, L.; Yang, H.; Cheng, Q. Orbital Lifetime (2008–2017) Radiometric Calibration and Evaluation of the HJ-1B IRS Thermal Infrared Band. Remote Sens. 2020, 12, 2362. https://doi.org/10.3390/rs12152362
Liu W, Li J, Han Q, Zhu L, Yang H, Cheng Q. Orbital Lifetime (2008–2017) Radiometric Calibration and Evaluation of the HJ-1B IRS Thermal Infrared Band. Remote Sensing. 2020; 12(15):2362. https://doi.org/10.3390/rs12152362
Chicago/Turabian StyleLiu, Wanyue, Jiaguo Li, Qijin Han, Li Zhu, Hongyan Yang, and Qiuming Cheng. 2020. "Orbital Lifetime (2008–2017) Radiometric Calibration and Evaluation of the HJ-1B IRS Thermal Infrared Band" Remote Sensing 12, no. 15: 2362. https://doi.org/10.3390/rs12152362
APA StyleLiu, W., Li, J., Han, Q., Zhu, L., Yang, H., & Cheng, Q. (2020). Orbital Lifetime (2008–2017) Radiometric Calibration and Evaluation of the HJ-1B IRS Thermal Infrared Band. Remote Sensing, 12(15), 2362. https://doi.org/10.3390/rs12152362