Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China
Abstract
:1. Introduction
2. Study Area
3. Data Sets
3.1. In Situ Soil Moisture Monitoring Network
3.1.1. Soil Moisture Observation Network
3.1.2. Soil Moisture Measurement
3.2. Time Series Data of NDVI and LST
4. Methodology
4.1. Asymmetric Gaussian Function Fitting
4.2. Multiple Linear Regression Fittings
5. Results and Discussions
5.1. Time Series NDVI and LST
5.2. Upscaling of In Situ Soil Moisture
5.3. Accuracy Evaluation of Upscaling Soil Moisture Models
5.4. Soil Moisture Variability at Different Temporal and Spatial Scales
5.4.1. Temporal Variability of Soil Moisture at the Regional Scale
5.4.2. Spatial Distribution of Soil Moisture at the Regional Scale
5.4.3. Soil Profile Moisture Heterogeneity at the Regional Scale
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site | Intercept-a0 | LST-a1 | NDVIRES-a2 | NDVIAG-a3 | F-Value | R | RMSE |
---|---|---|---|---|---|---|---|
D1 | −0.0448 | 0.0003 | 0.1239 | 0.1552 | 47.1598 ** | 0.8359 | 0.0082 |
D2 | 0.0356 | 0.0000 | 0.1810 | 0.1748 | 38.1284 ** | 0.7985 | 0.0170 |
D3 | −0.2269 | 0.0008 | 0.4974 | 0.6081 | 45.2227 ** | 0.8222 | 0.0224 |
D4 | −0.1502 | 0.0007 | 0.0725 | 0.0469 | 62.7791 ** | 0.8798 | 0.0079 |
D5 | −0.4594 | 0.0020 | −0.0527 | 0.0761 | 25.6997 ** | 0.7366 | 0.0294 |
D6 | −0.1641 | 0.0008 | −0.0593 | 0.1495 | 12.7288 ** | 0.6580 | 0.0351 |
D7 | −0.0033 | 0.0000 | 0.2733 | 0.4083 | 44.2384 ** | 0.8193 | 0.0271 |
D8 | −0.3441 | 0.0015 | 0.2253 | 0.2215 | 37.5842 ** | 0.7964 | 0.0256 |
D9 | −0.3716 | 0.0016 | 0.0603 | 0.1356 | 41.7135 ** | 0.8113 | 0.0313 |
D10 | −0.3128 | 0.0012 | 0.2242 | 0.4499 | 61.1032 ** | 0.8592 | 0.0204 |
D11 | −0.0782 | 0.0003 | 0.2959 | 0.2660 | 60.4343 ** | 0.8580 | 0.0276 |
D12 | −0.5718 | 0.0022 | 0.1828 | 0.0993 | 26.5246 ** | 0.8262 | 0.0266 |
D13 | −0.6246 | 0.0028 | −0.2230 | 0.1037 | 25.5179 ** | 0.7354 | 0.0561 |
D14 | −0.7640 | 0.0030 | −0.3891 | 0.0782 | 21.1450 ** | 0.7947 | 0.0345 |
D15 | −3.1465 | 0.0121 | −0.3682 | −0.1379 | 49.6064 ** | 0.8343 | 0.0655 |
D16 | −0.5756 | 0.0025 | −0.0085 | 0.1084 | 31.9732 ** | 0.7721 | 0.0388 |
D17 | −0.6236 | 0.0024 | −0.0017 | 0.4309 | 38.3976 ** | 0.8507 | 0.0587 |
D18 | −0.6764 | 0.0027 | −0.1042 | 0.0408 | 22.3538 ** | 0.7126 | 0.0330 |
D19 | −0.4705 | 0.0020 | −0.0212 | 0.0813 | 36.9206 ** | 0.7938 | 0.0313 |
D20 | 0.0072 | 0.0001 | 0.0309 | 0.2423 | 18.7568 ** | 0.7017 | 0.0256 |
D21 | 0.0465 | −0.0003 | 0.2537 | 0.9154 | 19.9186 ** | 0.7216 | 0.0205 |
D22 | −0.0461 | 0.0002 | 0.1433 | 0.4214 | 33.0572 ** | 0.7772 | 0.0153 |
D23 | −0.8592 | 0.0032 | 0.0515 | 0.2168 | 68.1222 ** | 0.8710 | 0.0283 |
D24 | 0.0002 | 0.0000 | 0.0661 | 0.1138 | 18.7331 ** | 0.7604 | 0.0185 |
D25 | −0.4217 | 0.0018 | 0.3830 | 0.1929 | 49.7008 ** | 0.8345 | 0.0243 |
D26 | −0.4072 | 0.0017 | 0.5010 | 0.1211 | 37.0421 ** | 0.7943 | 0.0300 |
D27 | −0.4132 | 0.0016 | 0.0655 | 0.0041 | 15.6931 ** | 0.6481 | 0.0243 |
D28 | −0.3328 | 0.0016 | 0.2332 | 0.1694 | 66.8502 ** | 0.8740 | 0.0250 |
D29 | −1.4304 | 0.0057 | −0.1453 | 0.0258 | 37.4054 ** | 0.8241 | 0.0436 |
D30 | −0.7721 | 0.0031 | 0.1355 | 0.0902 | 50.5135 ** | 0.8366 | 0.0265 |
D31 | −0.8850 | 0.0034 | 0.0180 | 0.1557 | 95.4179 ** | 0.9040 | 0.0253 |
Site | Intercept-a0 | LST-a1 | NDVIRES-a2 | NDVIAG-a3 | F-Value | R | RMSE |
---|---|---|---|---|---|---|---|
D1 | −0.0083 | 0.0002 | 0.0743 | 0.2354 | 41.1005 ** | 0.8224 | 0.0111 |
D2 | −0.1153 | 0.0007 | 0.0931 | 0.1193 | 34.1421 ** | 0.7822 | 0.0172 |
D3 | −0.0706 | 0.0004 | 0.0280 | 0.1362 | 106.4698 ** | 0.9115 | 0.0045 |
D4 | −0.1461 | 0.0007 | 0.0442 | 0.0442 | 81.4475 ** | 0.9158 | 0.0058 |
D5 | −0.4863 | 0.0021 | −0.0769 | 0.0640 | 42.4492 ** | 0.8137 | 0.0223 |
D6 | −0.1669 | 0.0008 | −0.0583 | 0.1072 | 10.6971 ** | 0.6252 | 0.0315 |
D7 | −0.1960 | 0.0009 | 0.1118 | 0.2254 | 68.0018 ** | 0.8791 | 0.0164 |
D8 | −0.2864 | 0.0013 | 0.2385 | 0.2561 | 73.0847 ** | 0.8783 | 0.0181 |
D9 | −0.3968 | 0.0018 | 0.0137 | 0.0914 | 35.6686 ** | 0.7887 | 0.0300 |
D10 | −0.1977 | 0.0009 | 0.1481 | 0.4672 | 97.0527 ** | 0.9042 | 0.0148 |
D11 | −0.2159 | 0.0009 | 0.2404 | 0.2235 | 76.6659 ** | 0.8830 | 0.0230 |
D12 | −0.4539 | 0.0019 | 0.1899 | 0.0817 | 30.0917 ** | 0.8422 | 0.0211 |
D13 | −0.6281 | 0.0028 | −0.2828 | 0.1395 | 20.4940 ** | 0.6972 | 0.0736 |
D14 | −1.2032 | 0.0047 | −0.5466 | 0.1281 | 28.3354 ** | 0.8347 | 0.0474 |
D15 | −2.9820 | 0.0116 | −0.3259 | −0.1956 | 28.7933 ** | 0.7554 | 0.0724 |
D16 | −0.5306 | 0.0023 | −0.0735 | 0.0654 | 15.8860 ** | 0.6504 | 0.0431 |
D17 | −0.4574 | 0.0019 | 0.1621 | 0.3431 | 36.6091 ** | 0.8450 | 0.0467 |
D18 | −0.4233 | 0.0018 | −0.1834 | 0.0218 | 7.6475 ** | 0.5108 | 0.0373 |
D19 | −0.4601 | 0.0019 | −0.0253 | 0.0735 | 40.5132 ** | 0.8072 | 0.0280 |
D20 | 0.0795 | −0.0001 | 0.1087 | 0.2177 | 25.5517 ** | 0.7545 | 0.0182 |
D21 | 0.0384 | −0.0002 | 0.1139 | 0.8839 | 25.9263 ** | 0.7654 | 0.0180 |
D22 | −0.0273 | 0.0002 | 0.1510 | 0.3218 | 15.9146 ** | 0.6596 | 0.0162 |
D23 | −0.8016 | 0.0032 | 0.0669 | 0.1044 | 77.8980 ** | 0.8845 | 0.0212 |
D24 | −0.2004 | 0.0007 | 0.0031 | 0.0648 | 137.3034 ** | 0.9537 | 0.0058 |
D25 | −0.4723 | 0.0019 | 0.4172 | 0.1751 | 47.0887 ** | 0.8462 | 0.0224 |
D26 | −0.4483 | 0.0020 | 0.4454 | 0.0871 | 35.3780 ** | 0.7875 | 0.0288 |
D27 | −0.2725 | 0.0011 | 0.0413 | 0.0380 | 23.8688 ** | 0.7240 | 0.0174 |
D28 | −0.3072 | 0.0015 | 0.1535 | 0.1483 | 78.3862 ** | 0.8896 | 0.0207 |
D29 | −1.7187 | 0.0068 | −0.2184 | 0.0185 | 30.9722 ** | 0.7980 | 0.0554 |
D30 | −0.7217 | 0.0029 | 0.1286 | 0.0932 | 48.8410 ** | 0.8323 | 0.0261 |
D31 | −0.9337 | 0.0034 | −0.0136 | 0.1848 | 51.1559 ** | 0.8401 | 0.0385 |
Site | Intercept-a0 | LST-a1 | NDVIRES-a2 | NDVIAG-a3 | F-Value | R | RMSE |
---|---|---|---|---|---|---|---|
D1 | −0.0014 | 0.0003 | −0.0091 | 0.0181 | 4.6020 ** | 0.4652 | 0.0095 |
D2 | −0.0332 | 0.0003 | 0.0570 | 0.0953 | 26.3842 ** | 0.7410 | 0.0140 |
D3 | −0.0842 | 0.0005 | 0.0172 | 0.0802 | 147.0702 ** | 0.9336 | 0.0036 |
D4 | −0.1455 | 0.0007 | 0.0316 | 0.0330 | 95.5330 ** | 0.9028 | 0.0058 |
D5 | −0.4512 | 0.0020 | −0.1234 | 0.0728 | 48.8376 ** | 0.8323 | 0.0213 |
D6 | −0.2033 | 0.0010 | −0.0737 | 0.0705 | 10.6289 ** | 0.6240 | 0.0277 |
D7 | −0.3535 | 0.0014 | 0.1489 | 0.2710 | 100.0371 ** | 0.9066 | 0.0188 |
D8 | −0.2611 | 0.0013 | 0.0147 | 0.1866 | 107.5899 ** | 0.9123 | 0.0132 |
D9 | −0.3237 | 0.0013 | 0.1924 | 0.0761 | 6.2735 ** | 0.4826 | 0.0567 |
D10 | −0.1469 | 0.0007 | 0.0054 | 0.3318 | 103.2531 ** | 0.9092 | 0.0108 |
D11 | −0.0180 | 0.0002 | 0.1437 | 0.2159 | 22.7155 ** | 0.7154 | 0.0353 |
D12 | −0.1346 | 0.0008 | 0.0908 | 0.0537 | 14.4754 ** | 0.7348 | 0.0149 |
D13 | −0.3398 | 0.0016 | −0.1759 | 0.1285 | 19.0697 ** | 0.7047 | 0.0547 |
D14 | −0.7170 | 0.0030 | −0.3272 | 0.0878 | 18.6426 ** | 0.7758 | 0.0381 |
D15 | −1.7513 | 0.0071 | −0.2116 | 0.0450 | 35.0906 ** | 0.7863 | 0.0667 |
D16 | −0.3874 | 0.0017 | −0.1079 | 0.0567 | 6.9133 ** | 0.4918 | 0.0526 |
D17 | −0.4576 | 0.0019 | 0.1425 | 0.4975 | 39.1722 ** | 0.8530 | 0.0618 |
D18 | −0.3296 | 0.0016 | −0.0880 | 0.0489 | 12.7872 ** | 0.6092 | 0.0322 |
D19 | −0.3036 | 0.0013 | −0.0353 | 0.0737 | 34.1784 ** | 0.7823 | 0.0263 |
D20 | −0.0590 | 0.0004 | 0.0769 | 0.1023 | 25.2061 ** | 0.7523 | 0.0131 |
D21 | 0.0503 | −0.0002 | 0.0502 | 0.6640 | 20.0755 ** | 0.7230 | 0.0153 |
D22 | −0.0449 | 0.0002 | −0.0200 | 0.7046 | 31.0264 ** | 0.7673 | 0.0259 |
D23 | −0.5755 | 0.0022 | 0.0430 | 0.1652 | 70.6508 ** | 0.8748 | 0.0202 |
D24 | −0.2131 | 0.0008 | 0.0179 | 0.1207 | 70.9558 ** | 0.9157 | 0.0128 |
D25 | −0.4455 | 0.0019 | 0.2208 | 0.1388 | 54.0855 ** | 0.8450 | 0.0211 |
D26 | −0.4102 | 0.0019 | 0.4669 | 0.1138 | 30.2195 ** | 0.7632 | 0.0331 |
D27 | −0.3371 | 0.0014 | 0.0287 | 0.0524 | 21.2821 ** | 0.7039 | 0.0233 |
D28 | −0.0846 | 0.0007 | 0.1239 | 0.1617 | 60.3166 ** | 0.8757 | 0.0202 |
D29 | −1.6336 | 0.0064 | −0.2181 | 0.0271 | 34.8192 ** | 0.8145 | 0.0503 |
D30 | −0.6545 | 0.0026 | 0.0989 | 0.0839 | 42.3720 ** | 0.8134 | 0.0249 |
D31 | −0.5294 | 0.0022 | 0.0122 | 0.2322 | 46.7052 ** | 0.8285 | 0.0399 |
Site | Intercept-a0 | LST-a1 | NDVIRES-a2 | NDVIAG-a3 | F-Value | R | RMSE |
---|---|---|---|---|---|---|---|
D1 | 0.0253 | 0.0001 | −0.0361 | 0.1726 | 19.3090 ** | 0.6979 | 0.0123 |
D2 | −0.1375 | 0.0007 | 0.0425 | 0.1023 | 38.1098 ** | 0.7985 | 0.0152 |
D3 | −0.0882 | 0.0005 | 0.0236 | 0.0765 | 155.1495 ** | 0.9367 | 0.0036 |
D4 | −0.1493 | 0.0007 | 0.0231 | 0.0354 | 120.8715 ** | 0.9209 | 0.0054 |
D5 | −0.3495 | 0.0016 | −0.1239 | 0.0601 | 33.9899 ** | 0.7815 | 0.0208 |
D6 | −0.3934 | 0.0018 | −0.0707 | −0.0019 | 20.0979 ** | 0.7394 | 0.0219 |
D7 | −0.1164 | 0.0006 | 0.0633 | 0.0714 | 112.0099 ** | 0.9154 | 0.0060 |
D8 | −0.0750 | 0.0008 | −0.0578 | 0.1556 | 126.9255 ** | 0.9242 | 0.0090 |
D9 | −0.2302 | 0.0012 | −0.1346 | 0.0672 | 20.0882 ** | 0.6964 | 0.0278 |
D10 | −0.0524 | 0.0003 | −0.2237 | 0.3529 | 90.7162 ** | 0.8998 | 0.0113 |
D11 | 0.0185 | 0.0002 | 0.1235 | 0.1380 | 19.0389 ** | 0.6839 | 0.0255 |
D12 | −0.1324 | 0.0008 | 0.0654 | 0.0170 | 20.7468 ** | 0.7919 | 0.0089 |
D13 | −0.3579 | 0.0017 | −0.0768 | 0.1460 | 23.4037 ** | 0.7206 | 0.0563 |
D14 | −0.4018 | 0.0017 | −0.2710 | 0.0489 | 9.4123 ** | 0.6579 | 0.0295 |
D15 | −0.5082 | 0.0024 | −0.0496 | 0.2065 | 27.0967 ** | 0.7480 | 0.0667 |
D16 | −0.0781 | 0.0007 | −0.1116 | 0.1095 | 8.8637 ** | 0.5388 | 0.0458 |
D17 | −0.2471 | 0.0010 | 0.1567 | 0.2524 | 24.4479 ** | 0.7906 | 0.0395 |
D18 | −0.0561 | 0.0007 | 0.0170 | 0.0606 | 12.1061 ** | 0.5987 | 0.0263 |
D19 | −0.2337 | 0.0011 | −0.0544 | 0.0720 | 32.4551 ** | 0.7744 | 0.0250 |
D20 | −0.1091 | 0.0005 | 0.0369 | 0.1078 | 22.2550 ** | 0.7315 | 0.0150 |
D21 | 0.0981 | −0.0004 | −0.1776 | 0.9557 | 12.3260 ** | 0.6341 | 0.0281 |
D22 | 0.0150 | 0.0001 | −0.0915 | 0.5681 | 21.8802 ** | 0.7088 | 0.0245 |
D23 | −0.5426 | 0.0021 | 0.0358 | 0.1850 | 51.7100 ** | 0.8395 | 0.0238 |
D24 | −0.0146 | 0.0000 | 0.0540 | 0.0580 | 4.5765 ** | 0.5540 | 0.0159 |
D25 | −0.2784 | 0.0012 | 0.0099 | 0.1675 | 40.9908 ** | 0.8088 | 0.0210 |
D26 | −0.0808 | 0.0003 | 0.1109 | 0.0342 | 13.1810 ** | 0.6150 | 0.0117 |
D27 | −0.1480 | 0.0007 | 0.0198 | 0.0610 | 26.5345 ** | 0.7420 | 0.0142 |
D28 | −0.2307 | 0.0012 | 0.1268 | 0.1033 | 34.8308 ** | 0.7922 | 0.0229 |
D29 | −0.4168 | 0.0020 | −0.0756 | 0.0395 | 20.0238 ** | 0.7289 | 0.0274 |
D30 | −0.6083 | 0.0025 | 0.0864 | 0.0694 | 48.0417 ** | 0.8302 | 0.0212 |
D31 | −0.4414 | 0.0019 | 0.0115 | 0.1648 | 43.6817 ** | 0.8218 | 0.0308 |
References
- Vereecken, H.; Huisman, J.A.; Franssen, H.H.; Bruggemann, N.; Bogena, H.; Kollet, S.; Javaux, M.; Der Kruk, J.V.; Vanderborght, J. Soil hydrology: Recent methodological advances, challenges, and perspectives. Water Resour. Res. 2015, 51, 2616–2633. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 44. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Han, Z.B.; Bogena, H.R.; Huisman, J.A.; Montzka, C.; Zhang, B.Q.; He, C.S. Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas. Hydrol. Earth Syst. Sci. Discuss. 2019. in review. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.C.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture–Climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S. Global Hydrological Cycles and World Water Resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Federer, C.A. A Soil-Plant-Atmosphere Model for Transpiration and Availability of Soil Water. Water Resour. Res. 1979, 15, 555–562. [Google Scholar] [CrossRef]
- Zhang, B.Q.; He, C.S.; Burnham, M.; Zhang, L.H. Evaluating the coupling effects of climate aridity and vegetation restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [Google Scholar] [CrossRef]
- Chen, R.; Kang, E.; Yang, J.; Zhang, J. A distributed daily runoff model of inland river mountainous basin. Adv. Earth Sci. 2003, 18, 198–206. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Chen, Y.N.; Pan, B.R. Distribution and floristics of desert plant communities in the lower reaches of Tarim River, southern Xinjiang, People’s Republic of China. J. Arid Environ. 2005, 63, 772–784. [Google Scholar] [CrossRef]
- Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment scale soil moisture spatial–temporal variability. J. Hydrol. 2012, 422, 63–75. [Google Scholar] [CrossRef]
- Robock, A.; Vinnikov, K.Y.; Srinivasan, G.; Entin, J.K.; Hollinger, S.E.; Speranskaya, N.A.; Liu, S.X.; Namkhai, A. The Global Soil Moisture Data Bank. B. Am. Meteorol. Soc. 2000, 81, 1281–1299. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, T.E.; Cosh, M.H.; Cuenca, R.H.; Dorigo, W.A.; Draper, C.S.; Hagimoto, Y.; Kerr, Y.H.; Njoku, E.G.; Small, E.E.; Zreda, M. State of the Art in Large-Scale Soil Moisture Monitoring. Soil Sci. Soc. Am. J. 2013, 77, 1888. [Google Scholar] [CrossRef] [Green Version]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Wagner, W. Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J. Geophys. Res. Atoms. 2003, 108, 4611. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldana, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Rötzer, K.; Montzka, C.; Vereecken, H. Spatio-temporal variability of global soil moisture products. J. Hydrol. 2015, 522, 187–202. [Google Scholar] [CrossRef]
- Xu, C.Y.; Qu, J.J.; Hao, X.J.; Cosh, M.; Prueger, J.; Zhu, Z.L.; Gutenberg, L. Downscaling of Surface Soil Moisture Retrieval by Combining MODIS/Landsat and In Situ Measurements. Remote Sens. 2018, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.H.; He, C.S.; Zhang, M.M. Multi-Scale Evaluation of the SMAP Product Using Sparse In-Situ Network over a High Mountainous Watershed, Northwest China. Remote Sens. 2017, 9, 1111. [Google Scholar] [CrossRef] [Green Version]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Watson, K. Geologic applications of thermal infrared images. Proc. IEEE 1975, 63, 128–137. [Google Scholar] [CrossRef]
- Price, J.C. On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia. Remote Sens. Environ. 1985, 18, 59–73. [Google Scholar] [CrossRef]
- Li, J.K.; Islam, S. Estimation of root zone soil moisture and surface fluxes partitioning using near surface soil moisture measurements. J. Hydrol. 2002, 259, 1–14. [Google Scholar] [CrossRef]
- Tobin, K.J.; Torres, R.; Crow, W.T.; Bennett, M.E. Multi-decadal analysis of root-zone soil moisture applying the exponential filter across CONUS. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 4403–4417. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Chai, L.N.; Liu, S.M.; Cui, H.Z.; Zhang, Y.H.; Jiang, L.M.; Jin, R.; Xu, Z.W. Estimating time series soil moisture by applying recurrent nonlinear autoregressive neural networks to passive microwave data over the Heihe River Basin, China. Remote Sens. 2017, 9, 574. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Ellenburg, W.L.; Markert, K.N.; Limaye, A.S. Performance evaluation of soil moisture profile estimation through entropy-based and exponential filter models. Hydrol. Sci. J. 2020, 65, 1036–1048. [Google Scholar] [CrossRef]
- Bablet, A.; Viallefont-Robinet, F.; Jacquemoud, S.; Fabre, S.; Briottet, X. High-resolution mapping of in-depth soil moisture content through a laboratory experiment coupling a spectroradiometer and two hyperspectral cameras. Remote Sens. Environ. 2020, 236, 11. [Google Scholar] [CrossRef]
- Parida, B.R.; Oinam, B.; Patel, N.R.; Sharma, N.; Kandwal, R. Land surface temperature variation in relation to vegetation type using MODIS satellite data in Gujarat state of India. Int. J. Remote Sens. 2008, 29, 4219–4235. [Google Scholar] [CrossRef]
- Bai, M.; Mo, X.G.; Liu, S.X.; Hu, S. Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China. Sci. Total Environ. 2019, 657, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Dash, P.; Gottsche, F.M.; Olesen, F.S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Yang, Y.T.; Guan, H.D.; Long, D.; Liu, B.; Qin, G.H.; Qin, J.; Batelaan, O. Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method. Remote Sens. 2015, 7, 8250–8270. [Google Scholar] [CrossRef] [Green Version]
- Montzka, C.; Rötzer, K.; Bogena, H.; Sanchez, N.; Vereecken, H. A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability. Remote Sens. 2018, 10, 427. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhang, B.Q.; He, C.S.; Yang, L.X. Variability in Soil Hydraulic Conductivity and Soil Hydrological Response Under Different Land Covers in the Mountainous Area of the Heihe River Watershed, Northwest China. Land Degrad. Dev. 2017, 28, 1437–1449. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, L.H.; Gu, J.; Zhao, C.; Tian, J.; He, C.S. Modelling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, Northwest China. Hydrol. Process. 2015, 29, 3318–3327. [Google Scholar] [CrossRef]
- Ye, Z.; Hong, T.; Chileshe, J.M.; Wen, T.; Feng, R.J. Multi-factor evaluation and modeling correction of EC-5 and 5TE soil moisture content sensors. Trans. Chin. Soc. Agric. Eng. 2012, 28, 157–166. [Google Scholar] [CrossRef]
- Tian, J.; Zhang, B.Q.; He, C.S.; Han, Z.B.; Bogena, H.R.; Huisman, J.A. Dynamic response patterns of profile soil moisture wetting events under different land covers in the Mountainous area of the Heihe River Watershed, Northwest China. Agric. For. Meteorol. 2019, 271, 225–239. [Google Scholar] [CrossRef]
- Didan, K. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V006; LP DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V006; LP DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]
- Marcal, A.R.S.; Wright, G.G. The use of ‘overlapping’ NOAA-AVHRR NDVI maximum value composites for Scotland and initial comparisons with the land cover census on a Scottish regional and District basis. Int. J. Remote Sens. 1997, 18, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Cihlar, J.; Ly, H.; Li, Z.; Chen, J.M.; Pokrant, H.; Huang, F. Multitemporal, multichannel AVHRR data sets for land biosphere studies—Artifacts and corrections. Remote Sens. Environ. 1997, 60, 35–57. [Google Scholar] [CrossRef]
- Kobayashi, H.; Dye, D.G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 2005, 97, 519–525. [Google Scholar] [CrossRef]
- Jonsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Atzberger, C.; Hogda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
ID | Elevation Range (m) | Soil Type | Vegetation Type | Percent (%) of Area |
---|---|---|---|---|
No.1 | 2000–2500 | Typical lime calcium soil | Medium coverage grassland | 1.53 |
No.2 | 2000–2500 | Chestnut soil | Medium coverage grassland | 0.91 |
No.3 | 2000–2500 | Sticky chestnut soil | Medium coverage grassland | 1.34 |
No.4 | 2500–3000 | Typical chestnut soil | Medium coverage grassland | 3.06 |
No.5 | 2500–3000 | Chestnut soil | Medium coverage grassland | 2.87 |
No.6 | 3000–3500 | Chestnut soil | Medium coverage grassland | 0.96 |
No.7 | 3000–3500 | Calcareous frozen calcium soil | Medium coverage grassland | 2.48 |
No.8 | 3000–3500 | Saturated cold felt soil | Medium coverage grassland | 3.79 |
No.9 | 3500–4000 | Saturated cold felt soil | Medium coverage grassland | 7.57 |
No.10 | 3500–4000 | Calcareous frozen calcium soil | Medium coverage grassland | 5.47 |
No.11 | 2500–3000 | Typical chestnut soil | Forest land | 3.22 |
No.12 | 2500–3000 | Typical gray cinnamon soil | Forest land | 1.34 |
No.13 | 2500–3000 | Peat type felt soil | Forest land | 0.97 |
No.14 | 2500–3000 | Chestnut soil | Forest land | 1.63 |
No.15 | 3000–3500 | Peat type felt soil | Forest land | 2.77 |
No.16 | 3000–3500 | Saturated cold felt soil | Forest land | 2.62 |
No.17 | 3500–4000 | Peat type felt soil | Forest land | 1.02 |
No.18 | 2500–3000 | Typical calcareous soil | Farm land | 2.05 |
No.19 | 2500–3000 | Dryland calcareous soil | Farm land | 1.66 |
No.20 | 2500–3000 | Calcareous cold calcareous soil | Bare land | 1.31 |
No.21 | 3000–3500 | Calcareous cold calcareous soil | Bare land | 1.74 |
No.22 | 3000–3500 | Saturated cold felt soil | Bare land | 1.04 |
No.23 | 3500–4000 | Typical frozen calcium soil | Bare land | 1.48 |
No.24 | 4000–4500 | Typical cold desert soil | Bare land | 9.33 |
No.25 | 4000–4500 | Saturated cold felt soil | Bare land | 3.54 |
No.26 | 2500–3000 | Typical chestnut soil | High coverage grassland | 1.24 |
No.27 | 2500–3000 | Chestnut soil | High coverage grassland | 1.01 |
No.28 | 3000–3500 | Typical chestnut soil | High coverage grassland | 2.40 |
No.29 | 3000–3500 | Peat type felt soil | High coverage grassland | 1.54 |
No.30 | 3000–3500 | Saturated cold felt soil | High coverage grassland | 3.73 |
No.31 | 3500–4000 | Saturated cold felt soil | High coverage grassland | 7.02 |
Biandukou | 3000–3500 | Peat type felt soil | High coverage grassland | |
Kangle | 2000–2500 | Chestnut soil | Medium coverage grassland | |
Dayekou | 2500–3000 | Chestnut soil | Forest land |
Site | Intercept-a0 | LST-a1 | NDVIRES-a2 | NDVIAG-a3 | F-Value | R | RMSE |
---|---|---|---|---|---|---|---|
D1 | −0.1428 | 0.0006 | 0.4888 | 0.3638 | 27.1860 ** | 0.7564 | 0.0230 |
D2 | 0.1053 | −0.0003 | 0.1883 | 0.1883 | 42.9037 ** | 0.8151 | 0.0156 |
D3 | −0.0943 | 0.0004 | 0.5355 | 0.2924 | 9.1448 ** | 0.5448 | 0.0264 |
D4 | −0.1903 | 0.0008 | 0.3047 | 0.0796 | 21.4239 ** | 0.7051 | 0.0184 |
D5 | −0.3828 | 0.0017 | 0.0371 | 0.1482 | 24.7216 ** | 0.7300 | 0.0402 |
D6 | −0.2111 | 0.0009 | −0.0079 | 0.1728 | 13.7290 ** | 0.6721 | 0.0374 |
D7 | −0.1888 | 0.0007 | 0.1290 | 0.2629 | 41.9671 ** | 0.8121 | 0.0224 |
D8 | −0.1269 | 0.0006 | 0.1196 | 0.0833 | 3.2826 * | 0.3627 | 0.0348 |
D9 | −0.2464 | 0.0012 | −0.1120 | 0.1672 | 28.5156 ** | 0.7538 | 0.0384 |
D10 | −0.2147 | 0.0006 | 0.3632 | 0.6959 | 44.2519 ** | 0.8193 | 0.0278 |
D11 | −0.1179 | 0.0003 | 0.2781 | 0.2624 | 44.5027 ** | 0.8201 | 0.0316 |
D12 | −0.5345 | 0.0021 | 0.1640 | 0.1196 | 24.0405 ** | 0.8130 | 0.0284 |
D13 | −1.3622 | 0.0055 | −0.1438 | 0.0452 | 26.5764 ** | 0.7422 | 0.0693 |
D14 | −0.7388 | 0.0028 | −0.2080 | 0.0848 | 30.9407** | 0.8456 | 0.0284 |
D15 | −3.7797 | 0.0144 | −0.4288 | −0.1371 | 34.2043 ** | 0.7824 | 0.0986 |
D16 | −0.4971 | 0.0021 | 0.0441 | 0.0946 | 40.0270 ** | 0.8055 | 0.0294 |
D17 | −0.8997 | 0.0035 | 0.0051 | 0.3303 | 49.3673 ** | 0.8780 | 0.0464 |
D18 | −0.8674 | 0.0032 | −0.1961 | 0.0720 | 20.9669 ** | 0.7243 | 0.0426 |
D19 | −0.4460 | 0.0020 | −0.0038 | 0.0830 | 37.9425 ** | 0.7978 | 0.0313 |
D20 | −0.0336 | 0.0002 | 0.0248 | 0.2648 | 14.7577 ** | 0.6579 | 0.0326 |
D21 | −0.0005 | −0.0001 | 0.4719 | 0.8539 | 18.8724 ** | 0.7122 | 0.0208 |
D22 | −0.0523 | 0.0003 | 0.1973 | 0.2839 | 13.0625 ** | 0.6133 | 0.0183 |
D23 | −0.9314 | 0.0034 | 0.0434 | 0.2500 | 69.0881 ** | 0.8725 | 0.0308 |
D24 | −0.1344 | 0.0005 | 0.1318 | 0.2409 | 91.0531 ** | 0.9325 | 0.0194 |
D25 | −0.3850 | 0.0016 | 0.3814 | 0.2454 | 46.1557 ** | 0.8249 | 0.0271 |
D26 | −0.3739 | 0.0017 | 0.5105 | 0.1177 | 31.1755 ** | 0.7681 | 0.0319 |
D27 | −0.4618 | 0.0019 | 0.1124 | 0.0800 | 18.9346 ** | 0.6829 | 0.0352 |
D28 | −0.4352 | 0.0021 | 0.1503 | 0.1258 | 118.7521 ** | 0.9229 | 0.0175 |
D29 | −0.9221 | 0.0038 | −0.0596 | 0.1164 | 55.6932 ** | 0.8713 | 0.0366 |
D30 | −0.6680 | 0.0028 | 0.1740 | 0.1285 | 44.6734 ** | 0.8269 | 0.0290 |
D31 | −0.9122 | 0.0033 | 0.0739 | 0.3898 | 56.3416 ** | 0.8517 | 0.0589 |
Layer | Site | N | R | RMSE | F-Value |
---|---|---|---|---|---|
0–10 cm | Biandukou | 48 | 0.6645 | 0.0373 | 36.3749 ** |
Dayekou | 54 | 0.7247 | 0.0417 | 57.5060 ** | |
Kangle | 54 | 0.6766 | 0.0247 | 43.9005 ** | |
mean | 0.6886 | 0.0346 | 45.9271 ** | ||
10–20 cm | Biandukou | 55 | 0.7366 | 0.0255 | 62.8749 ** |
Dayekou | 54 | 0.6310 | 0.0549 | 34.4064 ** | |
Kangle | 49 | 0.7981 | 0.0127 | 82.4391 ** | |
mean | 0.7219 | 0.0310 | 59.9068 ** | ||
20–30 cm | Biandukou | 55 | 0.7172 | 0.0258 | 56.1386 ** |
Dayekou | 54 | 0.7455 | 0.0275 | 65.0525 ** | |
Kangle | 54 | 0.8376 | 0.0106 | 122.2273 ** | |
mean | 0.7668 | 0.0213 | 81.1394 ** | ||
30–50 cm | Biandukou | 55 | 0.5410 | 0.0339 | 21.9261 ** |
Dayekou | 54 | 0.5908 | 0.0342 | 27.8885 ** | |
Kangle | 53 | 0.8940 | 0.0066 | 203.0996 ** | |
mean | 0.6753 | 0.0249 | 84.3048 ** | ||
50–70 cm | Biandukou | 30 | 0.5254 | 0.0338 | 10.6759 ** |
Dayekou | 54 | 0.6441 | 0.0247 | 36.8675 ** | |
Kangle | 54 | 0.8187 | 0.0094 | 105.6833 ** | |
mean | 0.6627 | 0.0226 | 51.0756 ** | ||
total | Biandukou | 0.6369 | 0.0313 | 37.5981 ** | |
Dayekou | 0.6672 | 0.0366 | 44.3442 ** | ||
Kangle | 0.8050 | 0.0128 | 111.4700 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, X.; Zhang, L.; He, C.; Zhu, Y. Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China. Remote Sens. 2020, 12, 2414. https://doi.org/10.3390/rs12152414
Bai X, Zhang L, He C, Zhu Y. Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China. Remote Sensing. 2020; 12(15):2414. https://doi.org/10.3390/rs12152414
Chicago/Turabian StyleBai, Xiao, Lanhui Zhang, Chansheng He, and Yi Zhu. 2020. "Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China" Remote Sensing 12, no. 15: 2414. https://doi.org/10.3390/rs12152414
APA StyleBai, X., Zhang, L., He, C., & Zhu, Y. (2020). Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China. Remote Sensing, 12(15), 2414. https://doi.org/10.3390/rs12152414