Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network
Abstract
:1. Introduction
- By using the decomposed covariance matrix, the potential of the Sentinel-1 time series in crop discrimination is fully explored.
- An effective crop classification method is proposed for time-series polarimetric SAR data by considering the temporal patterns of crop polarimetric and spatial characteristics.
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Sentinel-1 Data
2.2.2. Cropland Reference Data
3. Methods
3.1. Representation of Sentinel-1 Data
3.2. Architecture of DSCRNN Network
3.2.1. Depthwise Separable Convolution
3.2.2. Attentive Long Short-Term Memory Neural Network
3.3. Competing Methods
3.4. Dataset Partition
3.5. Experimental Designs
4. Results
4.1. Classification Results
4.1.1. Results on Study Area 1
4.1.2. Results on Study Area 2
4.2. Influence of Different Input Data
5. Discussion
5.1. Phase Information Importance
5.2. Pros and Cons
5.3. Potential Applications
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.A.; Runge, C.F.; Senauer, B.; Foley, J.; Polasky, S. Global agriculture and carbon trade-offs. Proc. Natl. Acad. Sci. USA 2014, 111, 12342–12347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2012, 78, 773–782. [Google Scholar]
- Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Griffiths, P.; Nendel, C.; Hostert, P. Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 2019, 220, 135–151. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Skriver, H. Crop classification by multitemporal C-and L-band single-and dual-polarization and fully polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2138–2149. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Roth, A.; Duffe, J.; Dech, S.; Hubberten, H.; Baumhauer, R. Land cover characterization and classification of arctic tundra environments by means of polarized synthetic aperture X- and C-band radar (PolSAR) and landsat 8 multispectral imagery — richards island, Canada. Remote Sens. 2014, 6, 8565–8593. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. A polarimetric decomposition method for ice in the Bohai Sea using C-band PolSAR data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 8, 47–66. [Google Scholar] [CrossRef]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Rolim, J.; Miguel, I.; Catalão, J.; Silva, J.; Painho, M.; Vekerdy, Z. Crop monitoring based on SPOT-5 Take-5 and sentinel-1A data for the estimation of crop water requirements. Remote Sens. 2016, 8, 525. [Google Scholar] [CrossRef] [Green Version]
- Ndikumana, E.; Minh, D.H.T.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y. Complex-valued convolutional neural network and its application in polarimetric SAR image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; He, X.; Xu, J.; Zhang, R.; Lu, Y. Scattering feature set optimization and polarimetric SAR classification using object-oriented RF-SFS algorithm in coastal wetlands. Remote Sens. 2020, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Loosvelt, L.; Peters, J.; Skriver, H.; Lievens, H.; van Coillie, F.; de Baets, B.; Verhoest, N. Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 173–184. [Google Scholar] [CrossRef]
- She, X.; Yang, J.; Zhang, W. The boosting algorithm with application to polarimetric SAR image classification. In Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007; pp. 779–783. [Google Scholar]
- Shang, R.; He, J.; Wang, J.; Xu, K.; Jiao, L.; Stolkin, R. Dense connection and depthwise separable convolution based CNN for polarimetric SAR image classification. Knowl. Based Syst. 2020. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Patel, V.M. SAR image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 2017, 24, 1763–1767. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wang, H.; Xu, F.; Jin, Y.-Q. Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4806–4817. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, H.; Xu, F.; Jin, Y.-Q. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1935–1939. [Google Scholar] [CrossRef]
- Li, L.; Ma, L.; Jiao, L.; Liu, F.; Sun, Q.; Zhao, J. Complex contourlet-CNN for polarimetric SAR image classification. Pattern Recognit. 2019, 194, 107110. [Google Scholar] [CrossRef]
- Chollet, F. Xception: Deep learning with depth wise separable convolutions. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A machine learning approach for precipitation nowcasting. In Proceedings of the Neural Information Processing Systems, Montreal, Quebec, Canada, 8–13 December 2014; pp. 802–810. [Google Scholar]
- Rubwurm, M.; Korner, M. Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images. In Proceedings of the Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1496–1504. [Google Scholar]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate change trends and impacts on California agriculture: A detailed review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2017, 204. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s Central Valley. Photogramm. Eng. Remote Sens. 2012, 78, 799–813. [Google Scholar] [CrossRef]
- Dyer, A.R.; Rice, K.J. Effects of competition on resource availability and growth of a California bunchgrass. Ecology 1999, 80, 2697–2710. [Google Scholar] [CrossRef]
- Li, M.; Bijker, W. Vegetable classification in Indonesia using Dynamic Time Warping of Sentinel-1A dual polarization SAR time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 268–280. [Google Scholar] [CrossRef]
- Boryan, C.G.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: A case study in the Sacramento Valley, California. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Jiao, L.; Hou, B.; Yang, S. POL-SAR image classification based on Wishart DBN and local spatial information. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3292–3308. [Google Scholar] [CrossRef]
- Howard, A.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. Available online: https://arxiv.org/abs/1704.04861 (accessed on 17 April 2017).
- Kamal, K.C.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease classification. Comput. Electron. Agric. 2019, 165, 104948. [Google Scholar]
- Zhang, T.; Zhang, X.; Shi, J.; Wei, S. Depthwise separable convolution neural network for high-speed SAR ship detection. Remote Sens. 2019, 11, 2483. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dong, H.; Zou, B. Efficiently utilizing complex-valued PolSAR image data via a multi-task deep learning framework. ISPRS J. Photogramm. Remote Sens. 2019, 157, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chen, S.; Tao, C. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:Learning/1412.6980. Available online: https://arxiv.org/abs/1412.6980 (accessed on 22 December 2014).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Liu, X.; Jiao, L.; Tang, X.; Sun, Q.; Zhang, D. Polarimetric convolutional network for PolSAR image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3040–3054. [Google Scholar] [CrossRef] [Green Version]
- Strobl, C.; Boulesteix, A.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Number of Pixels |
---|---|
Alfalfa | 240,969 |
Sugar beets | 91,176 |
Lettuce | 50,504 |
Onions | 46,053 |
Winter wheat | 20,627 |
Other hay | 33,017 |
Class | Number of Pixels |
---|---|
Almond | 56,435 |
Winter wheat | 34,308 |
Alfalfa | 148,189 |
Sunflower | 40,049 |
Tomato | 44,277 |
Dry beans | 19,718 |
Other hay | 41,834 |
Training Samples | Testing Samples | |
---|---|---|
Study area1 | 4837 | 16,124 |
Study area2 | 3707 | 10,131 |
Class | SVM | RF | Conv 1D | LSTM | Net A | Net B | Net C | DSCR NN |
---|---|---|---|---|---|---|---|---|
alfalfa | 0.8695 | 0.8457 | 0.9004 | 0.8859 | 0.9436 | 0.9535 | 0.9509 | 0.9537 |
sugar beets | 0.8858 | 0.9652 | 0.9380 | 0.9127 | 0.9164 | 0.9455 | 0.9821 | 0.9838 |
lettuce | 0.9164 | 0.9700 | 0.8667 | 0.7978 | 0.8346 | 0.9977 | 0.9535 | 0.9687 |
onions | 0.9158 | 0.9611 | 0.9410 | 0.9377 | 0.9960 | 0.9766 | 0.9443 | 0.9818 |
winter wheat | 0.8169 | 0.9827 | 0.8161 | 0.8284 | 0.6948 | 0.8441 | 0.9449 | 0.9947 |
other hay | 0.7459 | 0.9016 | 0.8021 | 0.6958 | 0.8273 | 0.8434 | 0.8270 | 0.8539 |
AA | 0.8584 | 0.9377 | 0.8774 | 0.8430 | 0.8688 | 0.9268 | 0.9338 | 0.9561 |
OA | 0.8735 | 0.8911 | 0.8998 | 0.8744 | 0.9092 | 0.9477 | 0.9486 | 0.9603 |
Kappa | 0.8069 | 0.8297 | 0.8487 | 0.8110 | 0.8757 | 0.9284 | 0.9296 | 0.9456 |
F1_score | 0.8709 | 0.8876 | 0.8982 | 0.8733 | 0.9086 | 0.9477 | 0.9483 | 0.9601 |
Class | SVM | RF | Conv 1D | LSTM | Net A | Net B | Net C | DSCR NN |
---|---|---|---|---|---|---|---|---|
almond | 0.7726 | 0.6887 | 0.8702 | 0.8418 | 0.8876 | 0.8456 | 0.8443 | 0.8736 |
winter wheat | 0.6871 | 0.8487 | 0.8428 | 0.7229 | 0.9383 | 0.9274 | 0.9608 | 0.9403 |
alfalfa | 0.8357 | 0.8122 | 0.8690 | 0.8771 | 0.9096 | 0.9575 | 0.9807 | 0.9634 |
sunflower | 0.8950 | 0.8532 | 0.8859 | 0.9029 | 0.9254 | 0.9652 | 0.9716 | 0.9524 |
tomato | 0.7467 | 0.6818 | 0.7836 | 0.8088 | 0.8744 | 0.8249 | 0.7913 | 0.9706 |
dry beans | 0.7710 | 0.9492 | 0.7435 | 0.8177 | 0.8750 | 0.9126 | 0.8568 | 0.8707 |
other hay | 0.5110 | 0.7252 | 0.7556 | 0.7700 | 0.7766 | 0.7623 | 0.8912 | 0.9036 |
AA | 0.7455 | 0.7942 | 0.8215 | 0.8202 | 0.8838 | 0.8851 | 0.8925 | 0.9249 |
OA | 0.8027 | 0.7894 | 0.8412 | 0.8378 | 0.8983 | 0.9110 | 0.9130 | 0.9389 |
Kappa | 0.7337 | 0.7133 | 0.7960 | 0.7926 | 0.8640 | 0.8823 | 0.8850 | 0.9191 |
F1_score | 0.7970 | 0.7760 | 0.8396 | 0.8359 | 0.8966 | 0.9103 | 0.9121 | 0.9390 |
AA | OA | Kappa | F1_Score | |
---|---|---|---|---|
RF-v1 | 0.9051 | 0.8652 | 0.7875 | 0.8592 |
Net A-v1 | 0.8818 | 0.8953 | 0.8580 | 0.8968 |
Net B-v1 | 0.8821 | 0.9004 | 0.8640 | 0.9009 |
RF-v2 | 0.8914 | 0.8843 | 0.8256 | 0.8795 |
Net A-v2 | 0.8688 | 0.9092 | 0.8757 | 0.9086 |
Net B-v2 | 0.9268 | 0.9477 | 0.9284 | 0.9477 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Zhao, W.; Yuan, Z.; Chen, J. Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network. Remote Sens. 2020, 12, 2493. https://doi.org/10.3390/rs12152493
Qu Y, Zhao W, Yuan Z, Chen J. Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network. Remote Sensing. 2020; 12(15):2493. https://doi.org/10.3390/rs12152493
Chicago/Turabian StyleQu, Yang, Wenzhi Zhao, Zhanliang Yuan, and Jiage Chen. 2020. "Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network" Remote Sensing 12, no. 15: 2493. https://doi.org/10.3390/rs12152493
APA StyleQu, Y., Zhao, W., Yuan, Z., & Chen, J. (2020). Crop Mapping from Sentinel-1 Polarimetric Time-Series with a Deep Neural Network. Remote Sensing, 12(15), 2493. https://doi.org/10.3390/rs12152493