Remote Sensing for Land Administration
Abstract
:1. Introduction
2. Overview of Contributions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dale, P.; McLaughlin, J. Land Administration; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Çağdaş, V.; Stubkjær, E. Doctoral research on cadastral development. Land Use Policy 2009, 26, 869–889. [Google Scholar] [CrossRef] [Green Version]
- Lemmen, C.; Van Oosterom, P.; Bennett, R. The land administration domain model. Land Use Policy 2015, 49, 535–545. [Google Scholar] [CrossRef] [Green Version]
- Enemark, S.; Williamson, I.; Wallace, J. Building modern land administration systems in developed economies. J. Spat. Sci. 2005, 50, 51–68. [Google Scholar] [CrossRef]
- Henssen, J. Land Registration and Cadastre Systems: Principles and Related Issues. In Lecture Notes of Technische Universität München; Technische Universität München: München, Germany, 2010. [Google Scholar]
- Bennett, R.; Wallace, J.; Williamson, I. Organising land information for sustainable land administration. Land Use Policy 2008, 25, 126–138. [Google Scholar] [CrossRef]
- Williamson, I.; Ting, L. Land administration and cadastral trends—A framework for re-engineering. Comput. Environ. Urban Syst. 2001, 25, 339–366. [Google Scholar] [CrossRef] [Green Version]
- Williamson, I.; Enemark, S.; Wallace, J.; Rajabifard, A. Land Administration for Sustainable Development; ESRI Press Academic: Redlands, CA, USA, 2010. [Google Scholar]
- Zevenbergen, J.; De Vries, W.; Bennett, R.M. (Eds.) Advances in Responsible Land Administration; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Zevenbergen, J.; Augustinus, C.; Antonio, D.; Bennett, R. Pro-poor land administration: Principles for recording the land rights of the underrepresented. Land Use Policy 2013, 31, 595–604. [Google Scholar] [CrossRef]
- Hendriks, B.; Zevenbergen, J.; Bennett, R.; Antonio, D. Pro-poor land administration: Towards practical, coordinated, and scalable recording systems for all. Land Use Policy 2019, 81, 21–38. [Google Scholar] [CrossRef]
- Bennett, R.; Rajabifard, A.; Williamson, I.; Wallace, J. On the need for national land administration infrastructures. Land Use Policy 2012, 29, 208–219. [Google Scholar] [CrossRef]
- Bennett, R.; Rajabifard, A.; Kalantari, M.; Wallace, J.; Williamson, I. Cadastral futures: Building a new vision for the nature and role of cadastres. In Proceedings of the FIG Congress, Sydney, Australia, 11–16 April 2010; pp. 11–16. [Google Scholar]
- van Oosterom, P.; Bennett, R.; Koeva, M.; Lemmen, C. 3D Land Administration for 3D Land Uses. Land Use Policy 2020, 104665. [Google Scholar] [CrossRef]
- Stoter, J.E.; van Oosterom, P. 3D Cadastre in an International Context: Legal, Organizational, and Technological Aspects; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- ISO. Geographic Information—Land Administration Domain Model (LADM); International Standard ISO 19152; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- Shnaidman, A.; van Oosterom, P.; Lemmen, C. LADM Refined Survey Model. In Proceedings of the 8th Land Administration Domain Model Workshop, Kuala Lumpur, Malaysia, 1–3 October 2019; van Oosterom, P., Lemmen, C., Rahman, A.A., Eds.; FIG International Federation of Surveyors: Copenhagen, Denmark, 2019; pp. 73–82. [Google Scholar]
- Bennett, R.M.; Pickering, M.; Sargent, J. Transformations, transitions, or tall tales? A global review of the uptake and impact of NoSQL, blockchain, and big data analytics on the land administration sector. Land Use Policy 2019, 83, 435–448. [Google Scholar] [CrossRef]
- Enemark, S.; Bell, K.C.; Lemmen, C.H.; McLaren, R. Fit-for-Purpose Land Administration; International Federation of Surveyors (FIG): Copenhagen, Denmark, 2014. [Google Scholar]
- Koeva, M.; Bennett, R.; Gerke, M.; Crommelinck, S.; Stöcker, C.; Crompvoets, J.; Ho, S.; Schwering, A.; Chipofya, M.; Schultz, C.; et al. Towards innovative geospatial tools for fit-for-purpose land rights mapping. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives, Proceedings of the ISPRS Geospatial Week 2017, Wuhan, China, 18–22 September 2017; ISPRS: Hannover, Germany, 2017; Volume 42, pp. 37–43. [Google Scholar]
- Asiama, K.; Bennett, R.; Zevenbergen, J. Participatory land administration on customary lands: A practical VGI experiment in Nanton, Ghana. ISPRS Int. J. Geo Inf. 2017, 6, 186. [Google Scholar] [CrossRef] [Green Version]
- Lengoiboni, M.; Richter, C.; Zevenbergen, J. Cross-cutting challenges to innovation in land tenure documentation. Land Use Policy 2019, 85, 21–32. [Google Scholar] [CrossRef]
- Bennett, R.; Kitchingman, A.; Leach, J. On the nature and utility of natural boundaries for land and marine administration. Land Use Policy 2010, 27, 772–779. [Google Scholar] [CrossRef]
- Bennett, R.M.; Molen, P.V.; Zevenbergen, J.A. Fitted, Green, and Volunteered: Legal and Survey Complexities of Future Boundary Systems. Geomatica 2012, 66, 181–193. [Google Scholar] [CrossRef]
- Grant, D.; Enemark, S.; Zevenbergen, J.; Mitchell, D.; McCamley, G. The Cadastral triangular model. Land Use Policy 2020, 97, 104758. [Google Scholar] [CrossRef]
- Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.Y.; Vosselman, G. Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016, 8, 689. [Google Scholar] [CrossRef] [Green Version]
- Konecny, G. Geoinformation: Remote Sensing, Photogrammetry and Geographic Information Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2016, 115, 22–36. [Google Scholar] [CrossRef]
- Dale, P.F.; McLaughlin, J.D. Land Information Management: An Introduction with Special Reference to Cadastral Problems in Third World Countries; Oxford University Press: Oxford, UK, 1988. [Google Scholar]
- Bennett, R.; Asiama, K.; Zevenbergen, J.; Juliens, S. The Intelligent Cadastre. In Proceedings of the FIG Commission 7 AGM, St Juliens, Malta, 16–19 November 2015. [Google Scholar]
- Bennett, R.M.; Gerke, M.; Crompvoets, J.; Alemie, B.K.; Crommelinck, S.C.; Stöcker, E.C. Building Third Generation Land Tools: Its4land, Smart Sketchmaps, UAVs, Automatic Feature Extraction, and the GeoCloud. In Proceedings of the Annual World Bank Conference on Land and Poverty, Washington, DC, USA, 20–24 March 2017. [Google Scholar]
- Park, S.; Song, A. Discrepancy analysis for detecting candidate parcels requiring update of land category in cadastral map using hyperspectral UAV Images: A case study in Jeonju, South Korea. Remote Sens. 2020, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Koeva, M.; Stöcker, C.; Crommelinck, S.; Ho, S.; Chipofya, M.; Sahib, J.; Bennett, R.; Zevenbergen, J.; Vosselman, G.; Lemmen, C.; et al. Innovative remote sensing methodologies for Kenyan land tenure mapping. Remote Sens. 2020, 12, 273. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; de Vries, W.T. Bridging the Semantic Gap between Land Tenure and EO Data: Conceptual and Methodological Underpinnings for a Geospatially Informed Analysis. Remote Sens. 2020, 12, 255. [Google Scholar] [CrossRef] [Green Version]
- Crommelinck, S.; Koeva, M.; Yang, M.Y.; Vosselman, G. Application of deep learning for delineation of visible cadastral boundaries from remote sensing imagery. Remote Sens. 2019, 11, 2505. [Google Scholar] [CrossRef] [Green Version]
- Koeva, M.; Nikoohemat, S.; Oude Elberink, S.; Morales, J.; Lemmen, C.; Zevenbergen, J. Towards 3D Indoor Cadastre Based on Change Detection from Point Clouds. Remote Sens. 2019, 11, 1972. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jaw, S.W.; Soon, K.H.; Wieser, A.; Schrotter, G. Towards an underground utilities 3D data model for land administration. Remote Sens. 2019, 11, 1957. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Persello, C.; Koeva, M. Deep fully convolutional networks for cadastral boundary detection from UAV images. Remote Sens. 2019, 11, 1725. [Google Scholar] [CrossRef] [Green Version]
- Fetai, B.; Oštir, K.; Kosmatin Fras, M.; Lisec, A. Extraction of visible boundaries for cadastral mapping based on UAV imagery. Remote Sens. 2019, 11, 1510. [Google Scholar] [CrossRef] [Green Version]
- Stöcker, C.; Ho, S.; Nkerabigwi, P.; Schmidt, C.; Koeva, M.; Bennett, R.; Zevenbergen, J. Unmanned Aerial System imagery, land data and user needs: A socio-technical assessment in Rwanda. Remote Sens. 2019, 11, 1035. [Google Scholar] [CrossRef] [Green Version]
Source | Title | Country | Applications | Techniques | Data |
---|---|---|---|---|---|
Park and Song | Discrepancy Analysis for Detecting Candidate Parcels Requiring Update of Land Category in Cadastral Map Using Hyperspectral UAV Images: A Case Study in Jeonju, South Korea | South Korea | Automated land use classification; land tenure and cadastral updating; land value | Convolutional neural network (CNN); Inconsistency comparison | UAV hyperspectral; cadastral map |
Koeva et al. | Innovative Remote Sensing Methodologies for Kenyan Land Tenure Mapping | Kenya | Land tenure and cadastral mapping | UAV survey; Machine learning; Nominal Group Technique (NGT); Semi-Structured Interviews; Questionnaires; Group Discussion | UAV RGB; sketch maps; human perceptions |
Lee and De Vries | Bridging the Semantic Gap between Land Tenure and EO Data: Conceptual and Methodological Underpinnings for a Geospatially Informed Analysis | North Korea | Land tenure and cadastral mapping; land use change | Research synthesis; Manual image interpretation | HRSI and aerial RGB (Google Earth); Landsat7; academic literature |
Crommelinck et al. | Application of Deep Learning for Delineation of Visible Cadastral Boundaries from Remote Sensing Imagery | Ethiopia, Kenya, Rwanda | Land tenure and cadastral mapping | Image segmentation (MCG); machine learning (RF and CNN) | Aerial RGB UAV RGB; cadastral map |
Koeva et al. | Towards 3D Indoor Cadastre Based on Change Detection from Point Clouds | The Netherlands | Land tenure and cadastral updating | Point cloud change detection techniques | Point clouds (mobile mapping system, Zeb-Revo); Riegl; architectural plans |
Yan et al. | Towards an Underground Utilities 3D Data Model for Land Administration | Singapore | Land tenure and cadastral mapping; land use and development | 3D modelling and visualisation | Stream EM GPR and Leica Pegasus Two photo and laser scanning data; cadastral data |
Xia et al. | Deep Fully Convolutional Networks for Cadastral Boundary Detection from UAV Images | Rwanda | Land tenure and cadastral mapping and updating | Machine learning; Fully Convolutional Network (FCN); Multi-Resolution Segementation (MRS); Globalized Probability of Boundary (gPb) | UAV RGB; cadastral map |
Fetai et al. | Extraction of Visible Boundaries for Cadastral Mapping Based on UAV Imagery | Slovenia | Land tenure and cadastral updating and mapping | Exelis Visual Information Solutions (ENVI) feature extraction | UAV RGB; GNSS; cadastral map |
Claudia Stöcker et al. | Unmanned Aerial System Imagery, Land Data and User Needs: A Socio-Technical Assessment in Rwanda | Rwanda | Land Use; Land Tenure; Land Development Cadastral Updating | NGT; interviews; workshop; UAV survey | UAV RGB; GNSS; cadastral map |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, R.; Oosterom, P.v.; Lemmen, C.; Koeva, M. Remote Sensing for Land Administration. Remote Sens. 2020, 12, 2497. https://doi.org/10.3390/rs12152497
Bennett R, Oosterom Pv, Lemmen C, Koeva M. Remote Sensing for Land Administration. Remote Sensing. 2020; 12(15):2497. https://doi.org/10.3390/rs12152497
Chicago/Turabian StyleBennett, Rohan, Peter van Oosterom, Christiaan Lemmen, and Mila Koeva. 2020. "Remote Sensing for Land Administration" Remote Sensing 12, no. 15: 2497. https://doi.org/10.3390/rs12152497
APA StyleBennett, R., Oosterom, P. v., Lemmen, C., & Koeva, M. (2020). Remote Sensing for Land Administration. Remote Sensing, 12(15), 2497. https://doi.org/10.3390/rs12152497