Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean
Abstract
:1. Introduction
2. Wave-Induced Parameterization Schemes
2.1. Wave-Induced Turbulence Mixing
2.2. Wave Transport Flux Residue
3. Materials and Methods
3.1. Observation Data
3.1.1. Jason-2
3.1.2. MW_IR
3.1.3. Argo
3.1.4. Buoy
3.2. Model Descriptions
3.2.1. Ocean Model
3.2.2. Wave Model
3.2.3. Wind Field and Wind Pressure Model
3.3. Overview of the Typhoon and Experimental Design
3.3.1. Overview of the Typhoon
3.3.2. Experimental Design
3.4. Measures of Quality for Models Validation
4. Results
4.1. Evaluation Under General Condition: The year 2016
4.2. Evaluation Under TC Condition: Nepartak
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kantha, L.H.; Clayson, C.A. An improved mixed layer model for geophysical applications. J. Geophys. Res. Oceans 1994, 99, 25235–25266. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 1982, 20, 851–875. [Google Scholar] [CrossRef] [Green Version]
- Rodi, W. Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. 1987, 92, 5305–5328. [Google Scholar] [CrossRef]
- Umlauf, L.; Burchard, H. A generic length-scale equation for geophysical turbulence models. J. Mar. Res. 2003, 61, 235–265. [Google Scholar] [CrossRef]
- Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. Aiaa J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- Kärnä, T. Discontinuous Galerkin discretization for two-equation turbulence closure model. Ocean Model. 2020, 150, 101619. [Google Scholar] [CrossRef]
- Reffray, G.; Bourdalle-Badie, R.; Calone, C. Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO. Geosci. Model Dev. 2015, 8, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Baptista, A.M. SELFE: A semi-implicit Eulerian–Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. 2008, 21, 71–96. [Google Scholar] [CrossRef]
- Kantha, L.H.; Clayson, C.A. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Model. 2004, 6, 101–124. [Google Scholar] [CrossRef]
- Ezer, T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. J. Geophys. Res. Oceans 2000, 105, 16843–16855. [Google Scholar] [CrossRef]
- Mellor, G.L. One-dimensional, ocean surface layer modeling: A problem and a solution. J. Phys. Oceanogr. 2001, 31, 790–809. [Google Scholar] [CrossRef]
- Ardhuin, F.; Rogers, E.; Babanin, A.V.; Filipot, J.F.; Magne, R.; Roland, A.; van der Westhuysen, A.; Queffeulou, P.; Lefevre, J.M.; Aouf, L. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation. J. Phys. Oceanogr. 2010, 40, 1917–1941. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; Mcwilliams, J.C.; Restrepo, J.M. Wave-current interaction in nearshore shear instability analyzed with a vortex force formalism. J. Geophys. Res. Oceans 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Voulgaris, G.; Warner, J.C.; Olabarrieta, M. Implementation of the vortex force formalism in the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model. 2012, 47, 65–95. [Google Scholar] [CrossRef]
- Martin, P.J. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res. Oceans 1985, 90, 903–916. [Google Scholar] [CrossRef]
- Canuto, V.M.; Howard, A.; Cheng, Y.; Dubovikov, M.S. Ocean Turbulence. Part I: One-Point Closure Model—Momentum and Heat Vertical Diffusivities. J. Phys. Oceanogr. 2001, 31, 1413–1426. [Google Scholar] [CrossRef]
- Harcourt, R.R. A Second-Moment Closure Model of Langmuir Turbulence. J. Phys. Oceanogr. 2013, 43, 673–697. [Google Scholar] [CrossRef]
- Harcourt, R.R. An Improved Second-Moment Closure Model of Langmuir Turbulence. J. Phys. Oceanogr. 2015, 45, 84–103. [Google Scholar] [CrossRef]
- Soloviev, A.; Lukas, R. Observation of wave-enhanced turbulence in the near-surface layer of the ocean during TOGA COARE. Deep Sea Res. Part I Oceanogr. Res. Pap. 2003, 50, 371–395. [Google Scholar] [CrossRef]
- Agrawal, Y.C.; Terray, E.A.; Donelan, M.A.; Hwang, P.A.; Williams, A.J.; Drennan, W.M.; Kahma, K.K.; Krtaigorodskii, S.A. Enhanced dissipation of kinetic energy beneath surface waves. Nature 1992, 359, 219–220. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Zhu, B.; Sun, C.; Zhang, L. The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data. Chin. J. Oceanol. Limnol. 2007, 25, 123–131. [Google Scholar] [CrossRef]
- Lai, Q.; Leiming, M.A.; Huang, W.; Liguang, W.U. The ocean response to Typhoon Morakot (2009) in the western North Pacific boundary region. Acta Oceanol. Sin. 2013, 35, 65–77. [Google Scholar]
- Liu, Z.; Jianping, X.U.; Sun, C.; Xiaofen, W.U. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanol. Sin. 2014, 33, 90–101. [Google Scholar] [CrossRef]
- Bender, M.A.; Ginis, I.; Kurihara, Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res. Atmos. 1993, 98, 23245–23263. [Google Scholar] [CrossRef]
- Wang, G.; Qiao, F. Ocean temperature responses to Typhoon Mstsa in the East China Sea. Acta Oceanol. Sin. 2008, 27, 26–38. [Google Scholar]
- Yang, Y.; Qiao, F.; Xia, C.; Jian, M.; Yuan, Y. Wave-induced mixing in the Yellow Sea. Chin. J. Oceanol. Limnol. 2004, 22, 322–326. [Google Scholar]
- Qiao, F.L.; Ma, J.; Xia, C.; Yang, Y.; Yuan, Y.L. Influences of the surface wave-induced mixing and tidal mixing on the vertical temperature structure of the Yellow and East China Seas in summer. Prog. Nat. Sci. Mater. Int. 2006, 16, 739–746. [Google Scholar]
- Xia, C.; Qiao, F.; Yang, Y.; Ma, J.; Yuan, Y. Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J. Geophys. Res. Oceans 2006, 111. [Google Scholar] [CrossRef]
- Song, Z.; Qiao, F.; Yang, Y.; Yuan, Y. An improvement of the too cold tongue in the tropical Pacific with the development of an ocean-wave-atmosphere coupled numerical model. Prog. Nat. Sci. Mater. Int. 2007, 17, 576–583. [Google Scholar]
- Toffoli, A.; McConochie, J.; Ghantous, M.; Loffredo, L.; Babanin, A.V. The effect of wave-induced turbulence on the ocean mixed layer during tropical cyclones: Field observations on the Australian North-West Shelf. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Aijaz, S.; Ghantous, M.; Babanin, A.V.; Ginis, I.; Thomas, B.; Wake, G. Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling. J. Geophys. Res. Oceans 2017, 122, 3939–3963. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.J.; Qiao, F.; Song, Z.; Ezer, T. Improving simulations of the upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence scheme. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A.V.; Haus, B.K. On the existence of water turbulence induced by nonbreaking surface waves. J. Phys. Oceanogr. 2009, 39, 2675–2679. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Jia, D.; Dai, D.; Song, Z. Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models. Philos. Trans. R. Soc. A 2016, 374, 20150201. [Google Scholar] [CrossRef] [Green Version]
- Babanin, A.V. On a wave-induced turbulence and a wave-mixed upper ocean layer. Geophys. Res. Lett. 2006, 33, 382–385. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Ezer, T.; Xia, C.; Yang, Y.; Lü, X.; Song, Z. A three-dimensional surface wave–ocean circulation coupled model and its initial testing. Ocean Dyn. 2010, 60, 1339–1355. [Google Scholar] [CrossRef]
- Dai, D.; Qiao, F.; Sulisz, W.; Han, L.; Babanin, A. An experiment on the nonbreaking surface-wave-induced vertical mixing. J. Phys. Oceanogr. 2010, 40, 2180–2188. [Google Scholar] [CrossRef]
- Qiao, F.; Yuan, Y.; Yang, Y.; Zheng, Q.; Xia, C.; Ma, J. Wave-induced mixing in the upper ocean: Distribution and application to a global ocean circulation model. Geophys. Res. Lett. 2004, 31, 293–317. [Google Scholar] [CrossRef]
- Yuan, Y.L.; Qiao, F.L.; Yin, X.Q.; Han, L.; Lu, M. Establishment of the Ocean Dynamic System with Four Sub-Systems and the Derivation of Their Governing Equation Sets. J. Hydrodyn. 2012, 24, 153–168. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk Parameterization of Air Sea Fluxes: Updates and Verification for the COARE Algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Paulson, C.A.; Simpson, J.J. Irradiance Measurements in the Upper Ocean. J. Phys. Oceanogr. 1977, 7, 952–956. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Yu, C.; Teng, Y.; Sun, M. Study on surface wave-induced mixing of transport flux residue under typhoon conditions. J. Oceanol. Limnol. 2019, 37, 1837–1845. [Google Scholar] [CrossRef]
- Ablain, M.; Cazenave, A.; Larnicol, G.; Balmaseda, M.; Cipollini, P.; Faugère, Y.; Fernandes, M.J.; Henry, O.; Johannessen, J.A.; Knudsen, P. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project. Ocean Sci. Discuss. 2015, 11, 2029–2071. [Google Scholar] [CrossRef]
- Han, G.; Ma, Z.; Chen, N.; Chen, N.; Yang, J.; Chen, D. Hurricane Isaac storm surges off Florida observed by Jason-1 and Jason-2 satellite altimeters. Remote Sens. Environ. 2017, 198, 244–253. [Google Scholar] [CrossRef]
- Lambin, J.; Morrow, R.; Fu, L.-L.; Willis, J.K.; Bonekamp, H.; Lillibridge, J.; Perbos, J.; Zaouche, G.; Vaze, P.; Bannoura, W.; et al. The OSTM/Jason-2 Mission. Mar. Geod. 2010, 33, 4–25. [Google Scholar] [CrossRef]
- Abdalla, S.; Janssen, P.A.E.M.; Bidlot, J.R. Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation. Mar. Geod. 2010, 33, 239–255. [Google Scholar] [CrossRef]
- Ray, R.D.; Beckley, B.D. Calibration of Ocean Wave Measurements by the TOPEX, Jason-1, and Jason-2 Satellites. Mar. Geod. 2012, 35, 238–257. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L.; Wentz, F.J.; Mears, C.A.; Smith, D.K. In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures. J. Geophys. Res. Oceans 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, D.H.; Owens, W.B. The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Oceanography 2000, 13, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.J.; Chang, M.H.; Hsieh, C.Y.; Chang, H.I.; Jan, S.; Wei, C.L. The role of enhanced velocity shears in rapid ocean cooling during Super Typhoon Nepartak 2016. Nat. Commun. 2019, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Mellor, G.L. Users Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model; Princeton University: Princeton, NJ, USA, 2004. [Google Scholar]
- Simos, T.J. Verification of Numerical Models of Lake Ontario Part I. Circulation in Spring and Early Summer. J. Phys. Oceanogr. 1974, 4, 207–523. [Google Scholar]
- Madala, R.V.; Piacsek, S.A. A semi-implicit numerical model for baroclinic oceans. J. Comput. Phys. 1977, 23, 167–178. [Google Scholar] [CrossRef]
- Zhao, B.; Qiao, F.; Cavaleri, L.; Wang, G.; Bertotti, L.; Liu, L. Sensitivity of typhoon modeling to surface waves and rainfall. J. Geophys. Res. Oceans 2017, 122, 1702–1723. [Google Scholar] [CrossRef]
- Oey, L.Y.; Ezer, T.; Wang, D.P.; Fan, S.J.; Yin, X.Q. Loop Current warming by Hurricane Wilma. Geophys. Res. Lett. 2006, 33, 153–172. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.M.; Young, C.C.; Levitus, S. Atlas of surface marine data 1994, Vol. 1: Algorithms and procedures. Noaa Atlas Nesdis 1994, 6, 20910–23282. [Google Scholar]
- Yuan, Y.; Hua, F.; Pan, Z.; Sun, L. LAGFD-WAM numerical wave model-Ⅰ. Basic physical model. Acta Oceanol. Sin. 1991, 10, 483–488. [Google Scholar]
- Yuan, Y.; Hua, F.; Pan, Z.; Sun, L. LAGFD-WAM numerical wave model-II. Characteristics inlaid scheme and its application. Acta Oceanol. Sin. 1992, 11, 18–28. [Google Scholar]
- Yang, Y.; Qiao, F.L.; Zhao, W.; Teng, Y.; Yuan, Y.L. MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanol. Sin. 2005, 27, 1–7. [Google Scholar]
- Phillips, O.M. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 1985, 156, 505–531. [Google Scholar] [CrossRef]
- Miles, J.W. On the generation of surface waves by shear flows. J. Fluid Mech. 1959, 7, 185–204. [Google Scholar]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Oceans 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A.; Gienapp, H.; Hasselmann, D.E.; Kruseman, P.; et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft. 1973, 12, 8–12. [Google Scholar]
- Fujita, T. Pressure distribution within typhoon. Geophys. Mag. 1952, 23, 437–451. [Google Scholar]
- Takahashi, K. Distribution of pressure and wind in a typhoon. J. Meteor. Soc. Jpn. 1939, 17, 417–421. [Google Scholar]
- Ueno, T. Numerical computations of the storm surges in tosa bay. J. Oceanogr. 1981, 37, 61–73. [Google Scholar] [CrossRef]
- Zheng, J.H.; Sang, S.; Wang, J.C.; Zhou, C.Y.; Zhao, H.J. Numerical simulation of typhoon-induced storm surge along Jiangsu coast, Part I: Analysis of tropical cyclone. Water Sci. Eng. 2017, 10, 2–7. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, P.C.; Li, W.; Liu, C.; Zhang, L.; Shao, C.; Zhang, X.; Chao, G.; Zhao, Y. Impact of Langmuir turbulence on the thermal response of the ocean surface mixed layer to Super Typhoon Haitang (2005). J. Phys. Oceanogr. 2018, 48, 1651–1674. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B. Upper-Ocean Response to Hurricane Frances (2004) Observed by Profiling EM-APEX Floats. J. Phys. Oceanogr. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Fan, Y.; Ginis, I.; Hara, T.; Wright, W.C.; Walsh, E.J. Numerical Simulations and Observations of Surface Wave Fields under an Extreme Tropical Cyclone. J. Phys. Oceanogr. 2012, 39, 2097–2116. [Google Scholar] [CrossRef]
- Price, J.F. Upper Ocean Response to a Hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Moon, I.J.; Ginis, I.; Hara, T.; Tolman, H.L.; Wright, C.W.; Walsh, E.J. Numerical Simulation of Sea Surface Directional Wave Spectra under Hurricane Wind Forcing. J. Phys. Oceanogr. 2003, 33, 1680–1706. [Google Scholar] [CrossRef] [Green Version]
- Stoney, L.; Walsh, K.; Babanin, A.V.; Ghantous, M.; Govekar, P.; Young, I. Simulated ocean response to tropical cyclones: The effect of a novel parameterization of mixing from unbroken surface waves. J. Adv. Modeling Earth Syst. 2017, 9, 759–780. [Google Scholar] [CrossRef]
- Zhang, Y.; Haiming, X.U.; Qiao, F.; Dong, C. Seasonal variation of the global mixed layer depth: Comparison between Argo data and FIO-ESM. Front. Earth Sci. 2018, 12, 24–36. [Google Scholar] [CrossRef]
- Yablonsky, R.M.; Ginis, I.; Thomas, B.; Tallapragada, V.; Sheinin, D.; Bernardet, L. Description and Analysis of the Ocean Component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF). J. Atmos. Ocean. Technol. 2015, 32, 144–163. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Sun, Y. Estimate of Ocean Mixed Layer Deepening after a Typhoon Passage over the South China Sea by Using Satellite Data. J. Phys. Oceanogr. 2012, 43, 498–506. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, D. Typhoon-induced variability of the oceanic surface mixed layer observed by argo floats in the western north Pacific Ocean. Atmos. Ocean. 2012, 50, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Cuypers, Y.; Vaillant, X.L.; Bouruet-Aubertot, P.; Vialard, J.; Mcphaden, M.J. Tropical storm-induced near-inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing. J. Geophys. Res. Oceans 2013, 118, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Furuichi, N.; Hibiya, T.; Niwa, Y. Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Huang, R.X. Decadal variability of wind-energy input to the world ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2006, 53, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F. Internal Wave Wake of a Moving Storm. Part I. Scales, Energy Budget and Observations. J. Phys. Oceanogr. 1983, 13, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Alford, M.H.; Cronin, M.F.; Klymak, J.M. Annual Cycle and Depth Penetration of Wind-Generated Near-Inertial Internal Waves at Ocean Station Papa in the Northeast Pacific. J. Phys. Oceanogr. 2012, 42, 889–909. [Google Scholar] [CrossRef]
- Brooks, D.A. The Wake of Hurricane Allen in the Western Gulf of Mexico. J. Phys. Oceanogr. 1983, 13, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Chalikov, D.V.; Makin, V.K. Models of the wave boundary layer. Bound. Layer Meteorol. 1991, 56, 83–99. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. Wave-Induced Stress and the Drag of Air Flow over Sea Waves. J. Phys. Oceanogr. 1989, 19, 745–754. [Google Scholar] [CrossRef] [Green Version]
WITM | WTFR | |
---|---|---|
EX1 | No | No |
EX2 | Yes | No |
EX3 | Yes | Yes |
ME | RMSE | r | E | R2 | ||
---|---|---|---|---|---|---|
SWH (m) | −0.13 | 0.47 | 0.95 | 0.77 | 0.79 | |
SST (°C) | EX1 | 0.44 | 0.52 | 0.72 | 0.76 | 0.78 |
EX2 | 0.37 | 0.47 | 0.82 | 0.82 | 0.83 | |
EX3 | 0.36 | 0.46 | 0.84 | 0.84 | 0.89 |
ME (°C) | RSME (°C) | r | E | R2 | ||
---|---|---|---|---|---|---|
NTU1 | EX1 | 1.84 | 1.92 | 0.53 | −1.08 | 0.89 |
EX2 | 1.36 | 1.43 | 0.63 | −0.71 | 0.95 | |
EX3 | 0.57 | 0.68 | 0.96 | 0.61 | 0.97 | |
NTU2 | EX1 | 1.55 | 1.67 | 0.35 | −1.57 | 0.75 |
EX2 | 0.90 | 0.99 | 0.56 | −0.26 | 0.90 | |
EX3 | -0.24 | 0.45 | 1.20 | 0.74 | 0.91 |
ME | RSME | r | E | R2 | ||
---|---|---|---|---|---|---|
MLD (m) | EX1 | −8.97 | 13.24 | 0.51 | 0.32 | 0.67 |
EX2 | −2.86 | 6.84 | 0.72 | 0.82 | 0.88 | |
EX3 | -2.60 | 5.13 | 0.78 | 0.90 | 0.96 | |
MLT (°C) | EX1 | 0.31 | 0.59 | 0.87 | 0.49 | 0.50 |
EX2 | 0.25 | 0.62 | 1.09 | 0.52 | 0.49 | |
EX3 | 0.12 | 0.57 | 1.16 | 0.75 | 0.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Yang, Y.; Yin, X.; Sun, M.; Shi, Y. Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean. Remote Sens. 2020, 12, 2808. https://doi.org/10.3390/rs12172808
Yu C, Yang Y, Yin X, Sun M, Shi Y. Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean. Remote Sensing. 2020; 12(17):2808. https://doi.org/10.3390/rs12172808
Chicago/Turabian StyleYu, Chengcheng, Yongzeng Yang, Xunqiang Yin, Meng Sun, and Yongfang Shi. 2020. "Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean" Remote Sensing 12, no. 17: 2808. https://doi.org/10.3390/rs12172808
APA StyleYu, C., Yang, Y., Yin, X., Sun, M., & Shi, Y. (2020). Impact of Enhanced Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak in a Regional Model of the Northwest Pacific Ocean. Remote Sensing, 12(17), 2808. https://doi.org/10.3390/rs12172808