Monitoring Suaeda salsa Spectral Response to Salt Conditions in Coastal Wetlands: A Case Study in Dafeng Elk National Nature Reserve, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.2.1. Field Survey
2.2.2. Pot Experiment Design
2.3. Plant Growth Indicators
2.4. Hyperspectral Measurement and Pre-Processing
2.5. Data Analysis
2.5.1. Calculation of Red Edge Parameters
2.5.2. Determination of Optimal Vegetation Indices
2.5.3. Statistical Analysis
3. Results
3.1. Habitat Soil Survey
3.2. Suaeda Salsa Response to Salt Treatemnts
3.3. Response of Canopy Reflectance Spectra of Suaeda Salsa to Salt Treatment
3.3.1. Spectral Properties of the Suaeda Salsa Canopy
3.3.2. Response of Red Edge Parameters of Suaeda Salsa Canopy Reflectance to Salt Treatment
3.3.3. Response of Sensitive Vegetation Indices to Total Chlorophyll Content
4. Discussion
4.1. Effects on Plant Parameters of Suaeda Salsa
4.2. Mechanisms and Potential for Monitoring Plant Stress Using Red Edge and Sensitive Vegetation Indices
5. Conclusions
- (1)
- Among all physiological indicators, the total chlorophyll content of Suaeda salsa showed the best response to the salt treatment.
- (2)
- The red edge parameters and vegetation indices that were sensitive to salt treatments were red edge area, red edge amplitude, D854/D792, and (D792 − D854)/(D792 + D854).
- (3)
- Compared with the red edge parameters, the vegetation indices D_RVI and D_NDVI strongly correlated with total chlorophyll content for the different salt treatments (p <0.01). The vegetation indices constructed based on the first derivative reflectance of the canopy spectra in the near-infrared band combination between 786–793 nm and 848–856 nm correlated best with the chlorophyll content of Suaeda salsa for the different salt treatments, especially for vegetation indices D854/D792,D655/D546,and (D792 − D854)/(D792 + D854).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- Cui, B.; He, Q.; Zhao, X. Ecological thresholds of Suaeda salsa to the environmental gradients of water table depth and soil salinity. Acta Ecol. Sin. 2008, 28, 1408–1418. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, D.; Liu, F.; Dai, T.; Jing, Q.; Cao, W. Effects of salt and waterlogging stresses and their combination on leaf photosynthesis, chloroplast ATP synthesis, and antioxidant capacity in wheat. Plant Sci. 2009, 176, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Saqib, M.; Akhtar, J.; Qureshi, R.H. Na+ exclusion and salt resistance of wheat (Triticum aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Sci. 2005, 169, 125–130. [Google Scholar] [CrossRef]
- Wang, B.; Lüttge, U.; Ratajczak, R. Specific regulation of SOD isoforms by NaCl and osmotic stress in leaves of the C3 halophyte Suaeda salsa L. J. Plant Physiol. 2004, 161, 285–293. [Google Scholar] [CrossRef]
- Li, J.; Hussain, T.; Feng, X.; Guo, K.; Chen, H.; Yang, C.; Liu, X. Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecol. Eng. 2019, 140, 105593. [Google Scholar] [CrossRef]
- An, Y.; Gao, Y.; Zhang, Y.; Tong, S.; Liu, X. Early establishment of Suaeda salsa population as affected by soil moisture and salinity: Implications for pioneer species introduction in saline-sodic wetlands in Songnen Plain, China. Ecol. Indic. 2019, 107, 105654. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wang, X.; Yang, X.; Cui, Z. Bioaugmentation-assisted phytoremediation of lead and salinity co-contaminated soil by Suaeda salsa and Trichoderma asperellum. Chemosphere 2019, 224, 716–725. [Google Scholar] [CrossRef]
- Song, J.; Fan, H.; Zhao, Y.; Jia, Y.; Du, X.; Wang, B. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat. Bot. 2008, 88, 331–337. [Google Scholar] [CrossRef]
- Guan, B.; Yu, J.; Wang, X.; Fu, Y.; Kan, X.; Lin, Q.; Han, G.; Lu, Z. Physiological Responses of Halophyte Suaeda salsa to Water Table and Salt Stresses in Coastal Wetland of Yellow River Delta. Clean Soil Air Water. 2011, 39, 1029–1035. [Google Scholar] [CrossRef]
- Bueno, M.; Lendínez, M.L.; Calero, J.; Del Pilar Cordovilla, M. Salinity responses of three halophytes from inland saltmarshes of Jaén (Southern Spain). Flora. Morphol. Geobotanik Oekophysiol. 2020, 266, 151589. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.; Liu, X.; Suarez, D.L. Fruit yield and survival of five commercial strawberry cultivars under field cultivation and salinity stress. Sci. Hortic. Amsterdam 2019, 243, 401–410. [Google Scholar] [CrossRef]
- Chen, B.; Sun, Z. Effects of nitrogen enrichment on variations of sulfur in plant-soil system of Suaeda salsa in coastal marsh of the Yellow River estuary, China. Ecol. Indic. 2020, 109, 105797. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, J.; Wang, W.; Huang, L.; Zhang, G.; Wang, D. Heavy metal contents and transfer capacities of Phragmites australis and Suaeda salsa in the Yellow River Delta, China. Phys. Chem. Earth Parts A B C 2018, 104, 3–8. [Google Scholar] [CrossRef]
- Sun, Z.; Mou, X.; Zhang, D.; Sun, W.; Hu, X.; Tian, L. Impacts of burial by sediment on decomposition and heavy metal concentrations of Suaeda salsa in intertidal zone of the Yellow River estuary, China. Mar. Pollut. Bull. 2017, 116, 103–112. [Google Scholar] [CrossRef]
- Mou, X.J.; Sun, Z.G. Effects of sediment burial disturbance on seedling emergence and growth of Suaeda salsa in the tidal wetlands of the Yellow River estuary. J. Exp. Mar. Biol. Ecol. 2011, 409, 99–106. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Q.; Bai, J.; Gao, H.; Huang, L.; Xiao, R. Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta, China. Proc. Environ. Sci. 2010, 2, 1717–1726. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.S.; Wang, R.Q.; Song, B.M. Plant community succession in modern Yellow River Delta, China. J. Zhejiang Univ. Sci. B 2007, 8, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Alexander, F.H.G.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging Spectrometry for Earth Remote Sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef]
- Yi, Q.; Huang, J.; Wang, F.; Wang, X.; Liu, Z. Monitoring Rice Nitrogen Status Using Hyperspectral Reflectance and Artificial Neural Network. Environ. Sci. Technol. 2007, 41, 6770–6775. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, H.; Zhang, X.; Wang, K.; Song, T.; Zeng, F. Detecting Suaeda salsa L. chlorophyll fluorescence response to salinity stress by using hyperspectral reflectance. Acta Physiol. Plant. 2012, 34, 581–588. [Google Scholar] [CrossRef]
- Li, G.; Wan, S.; Zhou, J.; Yang, Z.; Qin, P. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind. Crop. Prod. 2010, 31, 13–19. [Google Scholar] [CrossRef]
- Obermeier, W.A.; Lehnert, L.W.; Pohl, M.J.; Makowski Gianonni, S.; Silva, B.; Seibert, R.; Laser, H.; Moser, G.; Müller, C.; Luterbacher, J.; et al. Grassland ecosystem services in a changing environment: The potential of hyperspectral monitoring. Remote Sens. Environ. 2019, 232, 111273. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, J.; Ma, Y. Spectral discrimination and separable feature lookup table of typical vegetation species in Yellow River Delta wetland. Mar. Environ. Sci. 2015, 34, 420–426. [Google Scholar]
- Wu, T.; Zhao, D.; Kang, J.; Suo, A.; Wei, B.; Ma, Y. Research on remote sensing inversion biomass method based on the Suaeda Salsa’ s measured spectrum. Spectrosc. Spect. Anal. 2010, 30, 1336–1341. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, Z.; Wang, J.; Ding, J.; Yu, Y.; Li, J.; Xiao, N.; Jiang, L.; Zheng, Y.; Rimmington, G.M. Monitoring plant response to phenanthrene using the red edge of canopy hyperspectral reflectance. Mar. Pollut. Bull. 2014, 86, 332–341. [Google Scholar] [CrossRef]
- González-Piqueras, J.; Lopez-Corcoles, H.; Sánchez, S.; Villodre, J.; Bodas, V.; Campos, I.; Osann, A.; Calera, A. Monitoring crop N status by using red edge-based indices. Adv. Anim. Biosci. 2017, 8, 338–342. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Harrell, D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis. Agric. 2016, 17, 507–530. [Google Scholar] [CrossRef]
- Ali, A.; Imran, M.M. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards. Sci. Hortic. 2020, 267, 109326. [Google Scholar] [CrossRef]
- Li, L.; Ren, T.; Ma, Y.; Wei, Q.; Wang, S.; Li, X.; Cong, R.; Liu, S.; Lu, J. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Comput. Electron. Agric. 2016, 126, 21–31. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Yao, F.; Zhang, Z.; Yang, R.; Sun, J.; Cui, S. Hyperspectral models for estimating vegetation chlorophyll content based on red edge parameter. Trans. Chin. Soc. Agric. Eng. 2009, 25, 123–129. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, X.; Sun, H.; Yu, Y.; Wang, Y.; Yang, J.; Zhang, L. The estimation model of biomass of Suaeda Salsa in coastal wetland based on hyperspectral reflectance spectra. Trans. Oceanol. Limnol. 2017, 2, 96–100. [Google Scholar]
- Zhao, X.; Ling, Y.; Zhang, G.; Jie, S.; Hua, W.; Ding, Y. Community characteristics of beach wetland vegetations along a habitat gradient in Dafeng Milu Reserve of Jiangsu Province. Chin. J. Ecol. 2010, 29, 244–249. [Google Scholar]
- Zhao, S.; Shi, G.; Dong, X. The Guidance of Plant Physiology Experiments; Agricultural Science and Technology Press: Beijing, China, 2002. [Google Scholar]
- Jiang, C.; Chen, Y.; Wu, H.; Li, W.; Zhou, H.; Bo, Y.; Shao, H.; Song, S.; Puttonen, E.; Hyyppä, J. Study of a High Spectral Resolution Hyperspectral LiDAR in Vegetation Red Edge Parameters Extraction. Remote Sens. 2019, 11, 2007. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Tian, Y.; Yao, X.; Cao, W.; Zhu, Y.; Hannaway, D. Estimating Leaf Chlorophyll Content Using Red Edge Parameters. Pedosphere 2010, 20, 633–644. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, L.; Li, J.; Qi, J. A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS J. Photogramm. 2007, 62, 25–33. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Inoue, Y.; Guérif, M.; Baret, F.; Skidmore, A.; Gitelson, A.; Schlerf, M.; Darvishzadeh, R.; Olioso, A. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant Cell Environ. 2016, 39, 2609–2623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, G.A. Responses of leaf spectral reflectance to plant stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Kefu, Z.; Hai, F.; San, Z.; Jie, S. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress. Plant Sci. 2003, 165, 837–844. [Google Scholar] [CrossRef]
- Jennings, D.H. Halophytes, Succulence and Sodium in Plants-A Unified Theory. New Phytologist. 1968, 67, 899–911. [Google Scholar] [CrossRef]
- Eshel, A. Response of Suaeda aegyptiaca to KCl, NaCl and Na2SO4 treatments. Physiol. Plantarum. 1985, 64, 308–315. [Google Scholar] [CrossRef]
- Ajmal Khan, M.; Ungar, I.A.; Showalter, A.M. The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. J. Arid Environ. 2000, 45, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Huang, C.; Bai, J.; Zhang, G.; Zhao, Q.; Wen, X. Effects of drought and salt stresses on growth characteristics of euhalophyte Suaeda salsa in coastal wetlands. Phys. Chem. Earth Parts A B C 2018, 103, 68–74. [Google Scholar] [CrossRef]
- Song, J.; Shi, G.; Gao, B.; Fan, H.; Wang, B. Waterlogging and salinity effects on two Suaeda salsa populations. Physiol. Plantarum. 2011, 141, 343–351. [Google Scholar] [CrossRef]
- Lu, Q.; Lu, C.; Qiu, N.; Wang, B.; Kuang, T. Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? Plant Sci. 2002, 163, 1063–1068. [Google Scholar] [CrossRef]
- Wang, B.; Han, J.; Zhou, Z.; Dong, Y.; Guan, X.; Jiang, B. Ecological thresholds of Suadea heteroptera under gradients of soil salinity and moisture in Daling River estuarine wetland. Chin. J. Ecol. 2014, 33, 71–75. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Z.; Wang, J.; Xu, S.; Hou, W. Effects of salt stress on Suaeda heteroptera Kitagawa growth and osmosis-regulating substance concentration. Chin. J. Ecol. 2011, 30, 72–76. [Google Scholar]
- Qi, C.; Chen, M.; Song, J.; Wang, B. Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Sci. 2009, 176, 200–205. [Google Scholar] [CrossRef]
- Cai Hong, P.; Su Jun, Z.; Zhi Zhong, G.; Bao Shan, W. NaCl treatment markedly enhances H2O2—Scavenging system in leaves of halophyte Suaeda salsa. Physiol. Plantarum 2005, 125, 490–499. [Google Scholar] [CrossRef]
- Liu, X.; Duan, D.; Li, W.; Tadano, T. A Comparative Study on Responses of Growth and Solute Composition in Halophytes Suaeda Salsa and Limonium Bicolor to Salinity; Springer: Dordrecht, The Netherlands, 2008; Volume 40, pp. 135–143. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Non-destructive assessment of chlorophyll carotenoid and anthocyanin content in higher plant leaves: Principles and algorithms. Remote Sens. Agric. Environ. 2004, 263, 78–94. [Google Scholar]
- Lobos, G.A.; Retamales, J.B.; Hancock, J.F.; Flore, J.A.; Cobo, N.; Del Pozo, A. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’ grown under photo-selective nets. Environ. Exp. Bot. 2012, 75, 142–149. [Google Scholar] [CrossRef]
- Garriga, M.; Retamales, J.B.; Romero-Bravo, S.; Caligari, P.D.; Lobos, G.A. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. J. Integr. Plant Biol. 2014, 56, 505–515. [Google Scholar] [CrossRef]
- Hernández, J.A.; Olmos, E.; Corpas, F.J.; Sevilla, F.; Del Río, L.A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 1995, 105, 151–167. [Google Scholar] [CrossRef]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Huang, W.; Zhao, C.; Zhang, B.; Tong, Q. Estimating winter wheat plant water content using red edge parameters. Int. J. Remote Sens. 2004, 25, 3331–3342. [Google Scholar] [CrossRef]
- Zheng, J.; Li, F.; Du, X. Using Red Edge Position Shift to Monitor Grassland Grazing Intensity in Inner Mongolia. J. Indian Soc. Remote 2018, 46, 81–88. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crop. Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, S.; Gao, Y.; Ouyang, Z.; Li, B.; Fang, C.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Y.; Cheng, Q.; Li, Y.; Jiang, T.; San Liang, X. Analyzing the variation of the precipitation of coastal areas of eastern China and its association with sea surface temperature (SST) of other seas. Atmos. Res. 2019, 219, 114–122. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Fu, D.; Tsou, J.Y.; Jiang, T.; Liang, X.S.; Lu, X. Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data. Int. J. Appl. Earth Obs. 2018, 67, 173–178. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Y.; Cheng, Q.; Tsou, J.; Jiang, T.; Liang, X.S. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea. Int. J. Appl. Earth Obs. 2018, 68, 252–261. [Google Scholar] [CrossRef]
- Souza, A.A.; Galvão, L.S.; Santos, J.R. Relationships between Hyperion-derived vegetation indices, biophysical parameters, and elevation data in a Brazilian savannah environment. Remote Sens. Lett. 2010, 1, 55–64. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. For. Meteorol. 2011, 151, 1267–1276. [Google Scholar] [CrossRef]
- Kooistra, L.; Clevers, J.G.P.W. Estimating potato leaf chlorophyll content using ratio vegetation indices. Remote Sens. Lett. 2016, 7, 611–620. [Google Scholar] [CrossRef] [Green Version]
Red Edge Parameter | Definition | Algorithm |
---|---|---|
Red edge area [38] | The area of first derivative in the red edge (680~750nm) | |
Red edge amplitude [31] | The maximum of first derivative in the red edge (680~750nm) | |
Red edge skewness [32] | The skewness of first derivative in the red edge (680~750nm) | |
Red edge kurtosis [32] | The kurtosis of first derivative in the red edge (680~750nm) | |
Red edge position [39] | The wavelength (680~750nm) corresponding to the maximum of the first derivative |
Nutrition Items | Mean | SD | Max | Min | CV (%) |
---|---|---|---|---|---|
SSC (g/kg) | 6.646 | 4.024 | 17.600 | 0.800 | 60.550 |
pH | 8.393 | 0.230 | 8.940 | 8.020 | 2.740 |
TN (g/kg) | 0.748 | 0.417 | 2.080 | 0.240 | 55.750 |
SOM (g/kg) | 13.203 | 8.328 | 45.300 | 7.000 | 63.080 |
AK (mg/kg) | 486.360 | 345.597 | 1160 | 99 | 71.060 |
TC (g/kg) | 13.955 | 7.094 | 34.800 | 4.200 | 50.830 |
NN (mg/kg) | 6.279 | 3.359 | 12.800 | 1.340 | 54.000 |
AP (mg/kg) | 10.862 | 7.284 | 27.000 | 1.900 | 67.060 |
Indicator | Control | 50 mmol/L | 100 mmol/L | 200 mmol/L | 300 mmol/L | 400 mmol/L | 600 mmol/L |
---|---|---|---|---|---|---|---|
Height (cm) | 16.83 ± 0.64 | 17.97 ± 0.31 | 18.67 ± 0.21 | 21.5 ± 1.5 | 15.33 ± 0.15 | 13.5 ± 0.5 | 12.43 ± 0.15 |
Root length (cm) | 10.79 ± 0.9 | 13.13 ± 0.4 | 14.4 ± 0.53 | 16.9 ± 0.17 | 13.6 ± 1.68 | 9 ± 1.00 | 8.3 ± 0.20 |
Branch number | 13 ± 1.00 | 15 ± 1.00 | 16.67 ± 1.53 | 22 ± 1.00 | 14.33 ± 1.53 | 13 ± 1.00 | 10 ± 1.00 |
Leaf succulence | 4.54 ± 0.19 | 3.58 ± 0.44 | 6.82 ± 0.27 | 13.83 ± 0.77 | 4.95 ± 1.00 | 6.21 ± 0.34 | 4.85 ± 1.57 |
FW-above ground (g) | 34.48 ± 0.43 | 40.77 ± 0.64 | 45.35 ± 0.27 | 49.82 ± 1.08 | 27.49 ± 2.49 | 21.5 ± 0.2 | 13.8 ± 1.27 |
DW-above ground (g) | 7.61 ± 0.32 | 11.51 ± 1.47 | 6.66 ± 0.3 | 3.61 ± 0.15 | 5.64 ± 0.64 | 3.47 ± 0.21 | 2.99 ± 0.68 |
FW of roots (g) | 5.95 ± 0.35 | 7.55 ± 0.33 | 7.89 ± 0.25 | 9.67 ± 0.2 | 6.83 ± 0.61 | 4.67 ± 0.51 | 3.58 ± 0.65 |
DW of roots (g) | 1.28 ± 0.15 | 1.34 ± 0.36 | 1.28 ± 0.59 | 0.74 ± 0.42 | 1 ± 0.23 | 0.62 ± 0.19 | 0.65 ± 0.04 |
Chl-a (mg/L) | 2.8 ± 0.86 | 3.37 ± 0.47 | 2.51 ± 0.75 | 2.4 ± 0.43 | 2.2 ± 0.17 | 2.52 ± 0.4 | 1.73 ± 0.74 |
Chl-b (mg/L) | 0.85 ± 0.27 | 1.12 ± 0.5 | 0.77 ± 0.23 | 0.73 ± 0.13 | 0.64 ± 0.08 | 0.71 ± 0.1 | 0.53 ± 0.22 |
Chl-a+b (mg/L) | 3.65 ± 1.12 | 4.49 ± 0.88 | 3.28 ± 0.97 | 3.13 ± 0.55 | 2.85 ± 0.24 | 3.23 ± 0.5 | 2.26 ± 0.96 |
Car (mg/L) | 0.85 ± 0.28 | 0.78 ± 0.11 | 0.63 ± 0.17 | 0.62 ± 0.15 | 0.57 ± 0.05 | 0.64 ± 0.09 | 0.48 ± 0.22 |
Indicator | Control | 50 mmol/L | 100 mmol/L | 200 mmol/L | 300 mmol/L | 400 mmol/L | 600 mmol/L |
---|---|---|---|---|---|---|---|
Area | 0.27 ± 0.07 | 0.45 ± 0.06 | 0.4 ± 0.1 | 0.36 ± 0.03 | 0.34 ± 0.07 | 0.36 ± 0.01 | 0.24 ± 0.1 |
Amplitude | 0.0063 ± 0.0013 | 0.0098 ± 0.0014 | 0.0088 ± 0.0018 | 0.0079 ± 0.0005 | 0.0072 ± 0.0015 | 0.0081 ± 0.0003 | 0.0056 ± 0.002 |
Skewness | −0.32 ± 0.19 | −0.44 ± 0.04 | −0.35 ± 0.14 | −0.43 ± 0.12 | −0.53 ± 0.12 | −0.34 ± 0.02 | −0.21 ± 0.37 |
Kurtosis | 1.95 ± 0.04 | 1.96 ± 0.06 | 1.89 ± 0.16 | 1.88 ± 0.15 | 2.03 ± 0.15 | 1.81 ± 0.03 | 1.81 ± 0.14 |
Position | 708 ± 3 | 713 ± 2 | 711 ± 3 | 713 ± 2 | 713 ± 4 | 712 ± 2 | 708 ± 6 |
Index | Control | 50 mmol/L | 100 mmol/L | 200 mmol/L | 300 mmol/L | 400 mmol/L | 600 mmol/L |
---|---|---|---|---|---|---|---|
D655/D546 | −1.12 ± 0.41 | −1.5 ± 0.07 | −1.2 ± 0.28 | −1.17 ± 0.08 | −0.96 ± 0.15 | −1.27 ± 0.08 | −0.62 ± 0.16 |
D873/D846 | 0.94 ± 0.21 | 1.18 ± 0.16 | 1.06 ± 0.18 | 0.93 ± 0.11 | 0.86 ± 0.03 | 0.83 ± 0.1 | 0.77 ± 0.22 |
D854/D792 | 0.42 ± 0.19 | 0.3 ± 0.08 | 0.38 ± 0.19 | 0.57 ± 0.06 | 0.62 ± 0.12 | 0.42 ± 0.06 | 0.98 ± 0.06 |
(D645 − D791)/(D645 + D791) | −5.8 ± 7.6 | −38.11 ± 75.07 | −14.14 ± 17.65 | 5.17 ± 4 | 8.5 ± 2.56 | 6.46 ± 3.65 | 24.56 ± 31.87 |
(D792 − D854)/(D792 + D854) | 0.43 ± 0.2 | 0.54 ± 0.09 | 0.47 ± 0.18 | 0.28 ± 0.04 | 0.24 ± 0.1 | 0.41 ± 0.06 | 0.01 ± 0.03 |
(D781 − D625)/(D781 + D625) | 6.55 ± 10.39 | 31.76 ± 38.2 | −19.35 ± 0.35 | −4.54 ± 1.92 | −4.19 ± 2.63 | −4.59 ± 2.11 | −12.06 ± 26.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Zhang, S.; Tian, Y.; Li, Y.; Wen, R.; Tsou, J.; Zhang, Y. Monitoring Suaeda salsa Spectral Response to Salt Conditions in Coastal Wetlands: A Case Study in Dafeng Elk National Nature Reserve, China. Remote Sens. 2020, 12, 2700. https://doi.org/10.3390/rs12172700
Lu X, Zhang S, Tian Y, Li Y, Wen R, Tsou J, Zhang Y. Monitoring Suaeda salsa Spectral Response to Salt Conditions in Coastal Wetlands: A Case Study in Dafeng Elk National Nature Reserve, China. Remote Sensing. 2020; 12(17):2700. https://doi.org/10.3390/rs12172700
Chicago/Turabian StyleLu, Xia, Sen Zhang, Yanqin Tian, Yurong Li, Rui Wen, JinYau Tsou, and Yuanzhi Zhang. 2020. "Monitoring Suaeda salsa Spectral Response to Salt Conditions in Coastal Wetlands: A Case Study in Dafeng Elk National Nature Reserve, China" Remote Sensing 12, no. 17: 2700. https://doi.org/10.3390/rs12172700
APA StyleLu, X., Zhang, S., Tian, Y., Li, Y., Wen, R., Tsou, J., & Zhang, Y. (2020). Monitoring Suaeda salsa Spectral Response to Salt Conditions in Coastal Wetlands: A Case Study in Dafeng Elk National Nature Reserve, China. Remote Sensing, 12(17), 2700. https://doi.org/10.3390/rs12172700