A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results
Abstract
:1. Introduction
2. Principle and Methods
2.1. Principle of the Spaceborne Oceanic Lidar
2.2. Simulation Method
2.3. Scattering Phase Function Models
2.3.1. Scattering Phase Function of the Atmosphere
2.3.2. Scattering Phase Function of Seawater
3. Results
3.1. Results of Atmosphere–Ocean Simulation
3.2. Verification of the Simulator’s Accuracy
4. Discussion
4.1. Influence of Different Scattering Phase Functions
4.2. Lidar Signals from Inhomogeneous Seawaters
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Revelamarche, A.; Alvain, S.; Racault, M.; Dessailly, D.; Guiselin, N.; Jamet, C.; Vantrepotte, V.; Beaugrand, G. Estimation of the Potential Detection of Diatom Assemblages Based on Ocean Color Radiance Anomalies in the North Sea. Front. Mar. Sci. 2017, 4, 408. [Google Scholar] [CrossRef] [Green Version]
- Vedernikov, V.I.; Gagarin, V.I.; Demidov, A.B.; Burenkov, V.I.; Stunzhas, P.A. Primary production and chlorophyll distributions in the subtropical and tropical waters of the Atlantic Ocean in the autumn of 2002. Oceanology 2007, 47, 386–399. [Google Scholar] [CrossRef]
- Kulk, G.; Platt, T.; Dingle, J.; Jackson, T.; Jonsson, B.F.; Bouman, H.A.; Babin, M.; Brewin, R.J.W.; Doblin, M.; Estrada, M.; et al. Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades. Remote Sens. 2020, 12, 826. [Google Scholar] [CrossRef] [Green Version]
- Sosik, H.M. Characterizing seawater constituents from optical properties. In Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms; UNESCO: Paris, France, 2008. [Google Scholar]
- Mcclain, C.R. A Decade of Satellite Ocean Color Observations*. Annu. Rev. Mar. Sci. 2009, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Behrenfeld, M.J.; Hu, Y.; Hair, J.W.; Schulien, J.A. Spaceborne Lidar in the Study of Marine Systems. Annu. Rev. Mar. Sci. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Churnside, J.H. Review of profiling oceanographic lidar. Opt. Eng. 2014, 53, 051405. [Google Scholar] [CrossRef] [Green Version]
- Jamet, C.; Mj, B.; Ab, D.; Ov, K.; Gilerson, A. Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry. Front. Mar. Sci. 2019, 6, 251. [Google Scholar] [CrossRef]
- Liu, D.; Xu, P.; Zhou, Y.; Chen, W.; Han, B.; Zhu, X.; He, Y.; Mao, Z.; Le, C.; Chen, P. Lidar Remote Sensing of Seawater Optical Properties: Experiment and Monte Carlo Simulation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9489–9498. [Google Scholar] [CrossRef]
- Churnside, J.H. LIDAR detection of plankton in the ocean. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 3174–3177. [Google Scholar]
- Churnside, J.H.; Wilson, J.J.; Tatarskii, V.V. Airborne lidar for fisheries applications. Opt. Eng. 2001, 40, 406–414. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Bai, J.; Zhang, Y.; Shen, X. Influence of ocean surface waves and air bubbles on the polarization characteristics of spaceborne oceanographic lidar returns. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2018, Berlin, Germany, 10–12 September 2018. [Google Scholar]
- Churnside, J.H.; Ostrovsky, L.A. Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska. Int. J. Remote Sens. 2005, 26, 167–177. [Google Scholar] [CrossRef]
- Collister, B.L.; Zimmerman, R.C.; Sukenik, C.I.; Hill, V.J.; Balch, W.M. Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboard lidar. Remote Sens. Environ. 2018, 215, 85–96. [Google Scholar] [CrossRef]
- Chen, P.; Pan, D.L. Ocean Optical Profiling in South China Sea Using Airborne LiDAR. Remote Sens. 2019, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Hu, Y. Ocean, Land and Meteorology Studies Using Space-Based Lidar Measurements. In Proceedings of the 5th WSEAS Internatinal Conference on Remote Sensing, Washington, DC, USA, 17–19 October 2009. [Google Scholar]
- Liu, Q.; Liu, D.; Bai, J.; Zhang, Y.; Zhou, Y.; Xu, P.; Liu, Z.; Chen, S.; Che, H.; Wu, L.; et al. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater. Opt. Express 2018, 26, 30278–30291. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Lolli, S.; Delaval, A.; Loth, C.; Garnier, A.; Flamant, P.H. 0.355-micrometer direct detection wind lidar under testing during a field campaign in consideration of ESA’s ADM-Aeolus mission. Atmos. Meas. Tech. 2013, 6, 3349–3358. [Google Scholar] [CrossRef] [Green Version]
- Kanitz, T.; Lochard, J.; Marshall, J.; McGoldrick, P.; Lecrenier, O.; Bravetti, P.; Reitebuch, O.; Rennie, M.; Wernham, D.; Elfving, A. Aeolus First Light—First Glimpse. In Proceedings of the International Conference on Space Optics-ICSO 2018, Chania, Greece, 9–12 October 2018; Sodnick, Z., Karafolas, N., Cugny, B., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 11180. [Google Scholar]
- Chen, G.; Tang, J.; Zhao, C.; Wu, S.; Yu, F.; Ma, C.; Xu, Y.; Chen, W.; Zhang, Y.; Liu, J. Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography. Front. Mar. Sci. 2019, 6, 194. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, H.; Baghdadi, N.; Bailly, J.-S.; Pastol, Y.; Fabre, F. Wa-LiD: A new LiDAR simulator for waters. IEEE Geosci. Remote Sens. Lett. 2012, 9, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.E.; Mclean, J.W. Lidar equations for turbid media with pulse stretching. Appl. Opt. 1999, 38, 2384–2397. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.R.; Venable, D.D.; Campbell, J.W. Semianalytic Monte Carlo radiative transfer model for oceanographic lidar systems. Appl. Opt. 1981, 20, 3653–3656. [Google Scholar] [CrossRef] [PubMed]
- Punjabi, A.; Venable, D.D. Effects of multiple scattering on time- and depth-resolved signals in airborne lidar systems. Int. J. Remote Sens. 1986, 7, 615–626. [Google Scholar] [CrossRef]
- Gordon, H.R. Interpretation of airborne oceanic lidar: Effects of multiple scattering. Appl. Opt. 1982, 21, 2996–3001. [Google Scholar] [CrossRef]
- Zaccanti, G.; Bruscaglioni, P.; Dami, M. Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium. Appl. Opt. 1990, 29, 3938–3944. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, L.R. Multiple-scattering lidar equation. Appl. Opt. 1996, 35, 6449–6465. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chen, W.; Cui, X.; Malinka, A.; Liu, Q.; Han, B.; Wang, X.; Zhuo, W.; Che, H.; Song, Q.; et al. Validation of the Analytical Model of Oceanic Lidar Returns: Comparisons with Monte Carlo Simulations and Experimental Results. Remote Sens. 2019, 11, 1870. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Cui, X.; Chen, W.; Liu, C.; Bai, J.; Zhang, Y.; Zhou, Y.; Liu, Z.; Xu, P.; Che, H.; et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses. J. Quant. Spectrosc. Radiat. Transf. 2019, 237, 106638. [Google Scholar] [CrossRef]
- Zaccanti, G.; Bruscaglioni, P.; Gurioli, M.; Sansoni, P. Laboratory Simulations of Lidar Returns from Clouds—Experimental and Numerical Results. Appl. Opt. 1993, 32, 1590–1597. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; O’Malley, R.T.; Boss, E.S.; Hostetler, C.A.; Siegel, D.A.; Sarmiento, J.L.; Schulien, J.; Hair, J.W.; Lu, X. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2016, 10, 118–122. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall’Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Phillips, D.; Koerber, B. A Theoretical Study of an Airborne Laser Technique for determining Sea Water Turbidity. Aust. J. Phys. 1984, 37, 75. [Google Scholar] [CrossRef]
- Cui, X.; Liu, Q.; Zhou, Y.; Zhang, K.; Liu, D. Program of spaceborne oceanic lidar based on semianalytic monte carlo method. In Proceedings of the 2019 Photonics and Electromagnetics Research Symposium—Fall, PIERS—Fall 2019, Xiamen, China, 17–20 December 2019; pp. 919–927. [Google Scholar]
- Morel, A. Optical properties of pure water and pure sea water. Opt. Asp. Oceanogr. 1974, 1, 1–24. [Google Scholar]
- Liou, K.-N. A complementary theory of light scattering by homogeneous spheres. Appl. Math. Comput. 1977, 3, 331–358. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical properties of aerosols and clouds: The software package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Petzold, T.J. Volume Scattering Functions for Selected Ocean Waters; Scripps Institution of Oceanography La Jolla Ca Visibility Lab: San Diego, CA, USA, 1972. [Google Scholar]
- Henyey, L.G.; Greenstein, J.L. Diffuse radiation in the Galaxy. Astrophys. J. 1941, 93, 70–83. [Google Scholar] [CrossRef]
- Kattawar, G.W. A three-parameter analytic phase function for multiple scattering calculations. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Haltrin, V.I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater. Appl. Opt. 2002, 41, 1022–1028. [Google Scholar] [CrossRef]
- Fournier, G.R.; Forand, J.L. Analytic phase function for ocean water. In Proceedings of the SPIE—The International Society for Optical Engineering, Bergen, Norway, 13–15 June 1994; Volume 2258, pp. 194–201. [Google Scholar]
- Mobley, C.D.; Sundman, L.K.; Boss, E. Phase function effects on oceanic light fields. Appl. Opt. 2002, 41, 1035–1050. [Google Scholar] [CrossRef] [Green Version]
- Fournier, G.R.; Jonasz, M. Computer based underwater imaging analysis. In Airborne and In-Water Underwater Imaging; Gilbert, G.D., Ed.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 1999; Volume 3761, pp. 62–70. [Google Scholar]
- Lu, X.; Hu, Y.; Trepte, C.; Zeng, S.; Churnside, J.H. Ocean subsurface studies with the CALIPSO spaceborne lidar. J. Geophys. Res. Ocean. 2014, 119, 4305–4317. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Pelon, J.; Trepte, C.; Liu, K.; Rodier, S.; Zeng, S.; Lucker, P.; Verhappen, R.; Wilson, J. Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements. Opt. Express 2016, 24, 29001. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-Scattering Calculations for the Terrestrial Atmosphere. Appl. Opt. 1995, 34, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Liu, D.; Zhou, Y.; Chen, W.; Liu, Q.; Huang, T.; Liu, W.; Chen, Q.; Liu, Z.; Xu, P.; Cui, X.; et al. Phase function effects on the retrieval of oceanic high-spectral-resolution lidar. Opt. Express 2019, 27, A654–A668. [Google Scholar] [CrossRef] [PubMed]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Morel, A. Light and marine photosynthesis: A spectral model with geochemical and climatological implications. Prog. Oceanogr. 1991, 26, 263–306. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, D.; Xu, P.; Liu, C.; Bai, J.; Yang, L.; Cheng, Z.; Tang, P.; Zhang, Y.; Su, L. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar. Opt. Express 2017, 25, 11813–11826. [Google Scholar] [CrossRef] [PubMed]
- Alerstam, E.; Svensson, T.; Andersson-Engels, S. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 2008, 13, 060504. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Liu, Q. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 2013, 18, 050902. [Google Scholar] [CrossRef] [Green Version]
- Ramon, D.; Steinmetz, F.; Jolivet, D.; Compiègne, M.; Frouin, R. Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code. J. Quant. Spectrosc. Radiat. Transf. 2019, 222, 89–107. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Laser wavelength (nm) | 532 |
Power of the laser (mJ) | 100 |
Pulse width (nm) | 2 |
Divergence angle (mrad) | 0.1 |
Lidar height (km) | 700 |
Field of view (mrad) | 0.15 |
Telescope diameter (m) | 1.0 |
Parameter | Component | ||
---|---|---|---|
Water Soluble | Sea Salt (acc.) | Sea Salt (coa.) | |
a (m−1) | 1.4699 × 10−7 | 4.2842 × 10−10 | 1.749 × 10−7 |
b (m−1) | 9.9114 × 10−6 | 3.723 × 10−3 | 0.218 |
N (cm−3) | 1500 | 20 | 2 × 10−3 |
rmod | 0.0212 | 0.209 | 1.75 |
μ | 2.24 | 2.03 | 2.03 |
Parameter | Water | ||
---|---|---|---|
Open Ocean | Coastal Ocean | Turbid Harbor | |
a (m−1) | 0.114 | 0.179 | 0.366 |
b (m−1) | 0.037 | 0.219 | 1.824 |
c (m−1) | 0.151 | 0.398 | 2.190 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Cui, X.; Jamet, C.; Zhu, X.; Mao, Z.; Chen, P.; Bai, J.; Liu, D. A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results. Remote Sens. 2020, 12, 2820. https://doi.org/10.3390/rs12172820
Liu Q, Cui X, Jamet C, Zhu X, Mao Z, Chen P, Bai J, Liu D. A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results. Remote Sensing. 2020; 12(17):2820. https://doi.org/10.3390/rs12172820
Chicago/Turabian StyleLiu, Qun, Xiaoyu Cui, Cédric Jamet, Xiaolei Zhu, Zhihua Mao, Peng Chen, Jian Bai, and Dong Liu. 2020. "A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results" Remote Sensing 12, no. 17: 2820. https://doi.org/10.3390/rs12172820
APA StyleLiu, Q., Cui, X., Jamet, C., Zhu, X., Mao, Z., Chen, P., Bai, J., & Liu, D. (2020). A Semianalytic Monte Carlo Simulator for Spaceborne Oceanic Lidar: Framework and Preliminary Results. Remote Sensing, 12(17), 2820. https://doi.org/10.3390/rs12172820