Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower
Abstract
:1. Introduction
- C-driven models, or what we call the “de Wit school” crop growth simulation models [7], are based on the assimilation of C by photosynthetic parts of the plant, such as the SUCROS [8] or GECROS [9] models. These models, on the basis of their hierarchical architecture, are complex, require numerous parameters, and are difficult to calibrate; thus, they are difficult to upscale to large areas.
- Water-driven models are based on a predetermined relation between crop growth rate and transpiration according to water productivity parameters. Compared to that of the previous class, the approach of this class results in models whose structure is less complex, leading to fewer parameters. Among the most representative ones are the AquaCrop [10] or AqYield [11] models.
- Radiation-driven models, which have been constructed on the basis of [12]’s approach, convert intercepted or absorbed solar radiation into aboveground or total biomass via a radiation-use efficiency parameter, significantly reducing the number of photosynthetic parameters needed. Most crop models are radiation driven, including the CERES [13], EPIC [14], STICS [15], SAFY [16], and SAFY-WB [17] models.
2. Materials
2.1. Study Area
2.2. Flux Site and Experimental Instrumentation
2.2.1. Meteorological Data
2.2.2. Biomass and Yield Data
2.2.3. Flux Data
2.2.4. Soil Data
2.3. Satellite Data and Products
2.3.1. Multisatellite Optical Images
2.3.2. From Image Reflectance to GAI Estimates
3. Methods
3.1. The SAFYE-CO2 Model
3.2. Model Parameters
3.3. Model Parametrization and Calibration
3.4. Model Validation and Sensitivity Analysis
4. Results
4.1. Local Assessment of the Model’s Performances
4.2. Large-Scale Application
4.2.1. Impact of Soil Data and of Coupling with the Water Module on Model Performance
4.2.2. Biomass and Yield Estimates
4.3. C Budget Assessment at the Landscape Scale
5. Discussion
5.1. SAFYE-CO2 Overall Performances
5.2. Prerequisite to Compute Water Fluxes Over a Wide Area
5.3. Limitations and Potential Improvements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tallec, T.; Béziat, P.; Jarosz, N.; Rivalland, V.; Ceschia, E. Crops’ water use efficiencies in temperate climate: Comparison of stand, ecosystem and agronomical approaches. Agric. For. Meteorol. 2013, 168, 69–81. [Google Scholar] [CrossRef]
- De Witt, T.; Brouwer, R. The simulation of photosynthetic systems. In Proceedings of the IBP/PP Technical Meeting, Trebon, Czech Republic, 14–21 September 1969; p. 24. [Google Scholar]
- Arkin, G.F.; Vanderlip, R.L.; Ritchie, J.T. A Dynamic Grain Sorghum Growth Model. Trans. ASAE 1976, 19, 622–626. [Google Scholar] [CrossRef]
- Wilkerson, G.G.; Jones, J.W.; Boote, K.J.; Ingram, K.T.; Mishoe, J.W. Modeling Soybean Growth for Crop Management. Trans. ASAE 1983, 26, 63–73. [Google Scholar] [CrossRef]
- Swaney, D.P.; Jones, J.W.; Boggess, W.G.; Wilkerson, G.G.; Mishoe, J.W. Real-Time Irrigation Decision Analysis Using Simulation. Trans. ASAE 1983, 26, 562–568. [Google Scholar] [CrossRef]
- McKinion, J.M.; Baker, D.N.; Whisler, F.D.; Lambert, J.R. Application of the GOSSYM/COMAX system to cotton crop management. Agric. Syst. 1989, 31, 55–65. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; van Keulen, H.; van Laar, H.H.; Rabbinge, R. The “School of de Wit” crop growth simulation models: A pedigree and historical overview. Agric. Syst. 1996, 52, 171–198. [Google Scholar] [CrossRef]
- Van Laar, H.H. Simulation of Crop Growth for Potential and Water-Limited Production Situations: As Applied to Spring Wheat. 1992. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/359573 (accessed on 10 September 2020).
- Yin, X.; van Laar, H.H. Crop Systems Dynamics: An Ecophysiological Model of Genotype-by-Environment Interactions (GECROS); Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 2009, 101, 426. [Google Scholar] [CrossRef] [Green Version]
- Constantin, J.; Willaume, M.; Murgue, C.; Lacroix, B.; Therond, O. The soil-crop models STICS and AqYield predict yield and soil water content for irrigated crops equally well with limited data. Agric. For. Meteorol. 2015, 206, 55–68. [Google Scholar] [CrossRef]
- Monteith, J.L.; Moss, C.J. Climate and the Efficiency of Crop Production in Britain and Discussion. Philos. Trans. R. Soc. B Biol. Sci. 1977, 281, 277–294. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R.; Dyke, P.T. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC Crop Growth Model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Bussière, F.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, B.; Fieuzal, R.; Rivera, M.A.; Ezzahar, J.; Jarlan, L.; Rodriguez, J.C.; Hagolle, O.; Watts, C. Impact of Sowing Date on Yield and Water Use Efficiency of Wheat Analyzed through Spatial Modeling and FORMOSAT-2 Images. Remote Sens. 2015, 7, 5951–5979. [Google Scholar] [CrossRef] [Green Version]
- Pique, G.; Fieuzal, R.; Al Bitar, A.; Veloso, A.; Tallec, T.; Brut, A.; Ferlicoq, M.; Zawilski, B.; Gibrin, H.; Ceschia, E.; et al. Estimation of daily CO2 fluxes and of the components of the carbon budget for winter wheat by the assimilation of Sentinel 2-like remote sensing data into a crop model. Geoderma 2020, 376, 114428. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Diepen, C.A.; Wolf, J.; Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Villalobos, F.J.; Hall, A.J.; Ritchie, J.T.; Orgaz, F. OILCROP-SUN: A Development, Growth, and Yield Model of the Sunflower Crop. Agron. J. 1996, 88, 403. [Google Scholar] [CrossRef]
- Casadebaig, P.; Guilioni, L.; Lecoeur, J.; Christophe, A.; Champolivier, L.; Debaeke, P. SUNFLO, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agric. For. Meteorol. 2011, 151, 163–178. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Sibley, A.M.; Grassini, P.; Thomas, N.E.; Cassman, K.G.; Lobell, D.B. Testing Remote Sensing Approaches for Assessing Yield Variability among Maize Fields. Agron. J. 2014, 106, 24. [Google Scholar] [CrossRef]
- Sus, O.; Heuer, M.W.; Meyers, T.P.; Williams, M. A data assimilation framework for constraining upscaled cropland carbon flux seasonality and biometry with MODIS. Biogeosciences 2013, 10, 2451–2466. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Huang, J.; Liu, X.; Fan, J.; Ma, G.; Zou, J. Assimilating MODIS-LAI into Crop Growth Model with EnKF to Predict Regional Crop Yield. In Computer and Computing Technologies in Agriculture V; Li, D., Chen, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 370, pp. 410–418. [Google Scholar]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 44–57. [Google Scholar]
- Cicek, H.; Sunohara, M.; Wilkes, G.; McNairn, H.; Pick, F.; Topp, E.; Lapen, D.R. Using vegetation indices from satellite remote sensing to assess corn and soybean response to controlled tile drainage. Agric. Water Manag. 2010, 98, 261–270. [Google Scholar] [CrossRef]
- Panda, S.S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef] [Green Version]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of Remote-Sensing Imagery to Estimate Corn Grain Yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.-F.; Huc, M.; Keravec, P.; Fieuzal, R.; et al. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Durand, P.; et al. Agro-hydrology and multi-temporal high-resolution remote sensing: Toward an explicit spatial processes calibration. Hydrol. Earth Syst. Sci. 2014, 18, 5219–5237. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Battude, M.; Al Bitar, A.; Brut, A.; Tallec, T.; Huc, M.; Cros, J.; Weber, J.-J.; Lhuissier, L.; Simonneaux, V.; Demarez, V. Modeling water needs and total irrigation depths of maize crop in the south west of France using high spatial and temporal resolution satellite imagery. Agric. Water Manag. 2017, 189, 123–136. [Google Scholar] [CrossRef]
- Champolivier, L.; Debaeke, P.; Dejoux, J.F.; Dizien, C.; Micheneau, A.; Colombet, C.; Gibrin, H.; Pontet, C.; Al Bitar, A.; Ansart, A.; et al. Outils, références et méthodes pour la construction d’un simulateur pour la prévision du rendement et de la qualité du tournesol à l’échelle territoriale mobilisant la télédétection satellitaire. Innov. Agron. 2019, 71, 15–34. [Google Scholar] [CrossRef]
- Champolivier, L.; Debaeke, P.; Merrien, A. Pourquoi irriguer le tournesol, une culture réputée tolérante à la sécheresse? Innov. Agron. 2011, 14, 151–164. [Google Scholar]
- Béziat, P.; Ceschia, E.; Dedieu, G. Carbon balance of a three crop succession over two cropland sites in South West France. Agric. For. Meteorol. 2009, 149, 1628–1645. [Google Scholar] [CrossRef] [Green Version]
- Durand, Y.; Brun, E.; Merindol, L.; Guyomarc’h, G.; Lesaffre, B.; Martin, E. A meteorological estimation of relevant parameters for snow models. Ann. Glaciol. 1993, 18, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Moncrieff, J.B.; Massheder, J.M.; De Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Grünwald, T.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Dobarco, M.R.; Bourennane, H.; Arrouays, D.; Saby, N.P.A.; Cousin, I.; Martin, M.P. Uncertainty assessment of GlobalSoilMap soil available water capacity products: A French case study. Geoderma 2019, 344, 14–30. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Guevara, M.A.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. Methodologies for Global Soil Mapping. In Digital Soil Mapping; Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 429–436. [Google Scholar]
- Dobarco, M.R.; Cousin, I.; le Bas, C.; Martin, M.P. Pedotransfer functions for predicting available water capacity in French soils, their applicability domain and associated uncertainty. Geoderma 2019, 336, 81–95. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Miller, J.R.; McNairn, H.; Smith, A.; Hu, B. Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sens. Environ. 2010, 114, 1167–1177. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, V. SPOT-4 (Take 5): Simulation of Sentinel-2 Time Series on 45 Large Sites. Remote Sens. 2015, 7, 12242–12264. [Google Scholar] [CrossRef] [Green Version]
- Lafrance, B.; Lenot, X.; Ruffel, C.; Cao, P.; Rabaute, T. Outils de prétraitements des images optiques KALIDEOS. Rev. Fr. Photogramm. Télédétect. 2012, 197, 10–16. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Weiss, M.; Samain, O.; Roujean, J.L.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- McCree, K.J. Equations for the Rate of Dark Respiration of White Clover and Grain Sorghum, as Functions of Dry Weight, Photosynthetic Rate, and Temperature1. Crop Sci. 1974, 14, 509. [Google Scholar] [CrossRef]
- Van’t Hoff, J.H. Lectures on Theoretical and Physical Chemistry. Part I. Chemical Dynamics; Edward Arnold: London, UK, 1898; pp. 224–229. [Google Scholar]
- Amthor, J.S. Respiration and Crop Productivity; Springer: New York, NY, USA, 1989. [Google Scholar]
- Choudhury, B.J. A sensitivity analysis of the radiation use efficiency for gross photosynthesis and net carbon accumulation by wheat. Agric. For. Meteorol. 2000, 101, 217–234. [Google Scholar] [CrossRef]
- Baret, F.; Olioso, A.; Luciani, J.L. Root biomass fraction as a function of growth degree days in wheat. Plant Soil 1992, 140, 137–144. [Google Scholar] [CrossRef]
- Ma, T.; Zeng, W.; Li, Q.; Yang, X.; Wu, J.; Huang, J. Shoot and Root Biomass Allocation of Sunflower Varying with Soil Salinity and Nitrogen Applications. Agron. J. 2017, 109, 2545. [Google Scholar] [CrossRef]
- Soares, J.V.; Bernard, R.; Taconet, O.; Vidal-Madjar, D.; Weill, A. Estimation of bare soil evaporation from airborne measurements. J. Hydrol. 1988, 99, 281–296. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Delogu, E. Modélisation de la Respiration du Sol dans les Agrosystèmes; Université Paul Sabatier: Toulouse, France, 2017. [Google Scholar]
- Bange, M.P.; Hammer, G.L.; Rickert, K.G. Temperature and Sowing Date Affect the Linear Increase of Sunflower Harvest Index. Agron. J. 1998, 90, 324. [Google Scholar] [CrossRef]
- Gholinezhad, E.; Aynaband, A.; Hassanzade, A.; Noormohamadi, G.; Bernousi, I. Study of the Effect of Drought Stress on Yield, Yield Components and Harvest Index of Sunflower Hybrid Iroflor at Different Levels of Nitrogen and Plant Population. Not. Bot. Horti Agrobot. 2009, 37, 85–94. [Google Scholar]
- Debaeke, P.; Casadebaig, P.; Haquin, B.; Mestries, E.; Palleau, J.-P.; Salvi, F. Simulation de la réponse variétale du tournesol à l’environnement à l’aide du modèle SUNFLO. Ol. Corps Gras Lipides 2010, 17, 143–151. [Google Scholar] [CrossRef]
- Ceschia, E.; Béziat, P.; Dejoux, J.F.; Aubinet, M.; Bernhofer, C.; Bodson, B.; Buchmann, N.; Carrara, A.; Cellier, P.; Elbers, J.A.; et al. Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric. Ecosyst. Environ. 2010, 139, 363–383. [Google Scholar] [CrossRef] [Green Version]
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Saab, M.-T.A.; Stöckle, C.; Steduto, P. Assessment of AquaCrop, CropSyst, and WOFOST Models in the Simulation of Sunflower Growth under Different Water Regimes. Agron. J. 2009, 101, 509. [Google Scholar] [CrossRef]
- Lehuger, S.; Gabrielle, B.; Cellier, P.; Loubet, B.; Roche, R.; Béziat, P.; Ceschia, E.; Wattenbach, M. Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model. Agric. Ecosyst. Environ. 2010, 139, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Saffih-Hdadi, K.; Mary, B. Modeling consequences of straw residues export on soil organic carbon. Soil Biol. Biochem. 2008, 40, 594–607. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S. RothC-26.3—A Model for the turnover of carbon in soil. In Evaluation of Soil Organic Matter Models; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 237–246. [Google Scholar]
- Ameline, M.; Fieuzal, R.; Betbeder, J.; Berthoumieu, J.-F.; Baup, F. Estimation of Corn Yield by Assimilating SAR and Optical Time Series into a Simplified Agro-Meteorological Model: From Diagnostic to Forecast. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4747–4760. [Google Scholar] [CrossRef]
- Baup, F.; Ameline, M.; Fieuzal, R.; Frappart, F.; Corgne, S.; Berthoumieu, J.-F. Temporal Evolution of Corn Mass Production Based on Agro-Meteorological Modelling Controlled by Satellite Optical and SAR Images. Remote Sens. 2019, 11, 1978. [Google Scholar] [CrossRef] [Green Version]
- Fieuzal, R.; Sicre, C.M.; Baup, F. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 14–23. [Google Scholar] [CrossRef]
- Revill, A.; Sus, O.; Barrett, B.; Williams, M. Carbon cycling of European croplands: A framework for the assimilation of optical and microwave Earth observation data. Remote Sens. Environ. 2013, 137, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Labbé, S.; Lebourgeois, V.; Jolivot, A.; Marti, R. Thermal infra-red remote sensing for water stress estimation in agriculture. Options Méditerr. Sér. B Etudes Rech. 2012, 67, 175–184. [Google Scholar]
Cropping Year | Sowing | Harvest | Mean Temperature [°C] | Mean Radiation [MJ·m−2] | Cumulative Precipitation [mm] |
---|---|---|---|---|---|
2007 | 10th of April | 20th of September | 18.0 | 19.3 | 339 |
2013 | - | - | 17.3 | 20.1 | 364 |
2014 | - | - | 17.6 | 19.8 | 178 |
2015 | - | - | 19.0 | 20.2 | 275 |
2016 | 20th of April | 23th of September | 18.1 | 20.8 | 294 |
Average 2007–2016 | - | - | 18.2 | 20.3 | 267 |
Year | Number of Fields Monitored | Dry Aboveground Mass | Final Yield | Workable Final Yield | CO2 and H2O Fluxes | Scale |
---|---|---|---|---|---|---|
2007 | FR-Aur | 7 | 1 | 1 | Yes | Field/ESU * |
2013 | 9 | 36 | 9 | 9 | No | ESU |
2014 | 70 | - | 36 | 21 | No | Field |
2015 | 116 | - | 79 | 49 | No | Field |
2016 | FR-Aur | 3 | 1 | 1 | Yes | ESU |
Field Capacity [m3·m−3] | Wilting Point [m3·m−3] | Available Water Capacity [m3·m−3] | Soil Depth [cm] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Source of Data | Surface Layer | Root Layer | Deep Layer | Surface Layer | Root Layer | Deep Layer | Surface Layer | Root Layer | Deep Layer | - |
In situ | 0.31 | 0.39 | 0.39 | 0.13 | 0.19 | 0.19 | 0.18 | 0.2 | 0.2 | (100–200) |
GSM | 0.29 | 0.3 | 0.29 | 0.18 | 0.17 | 0.16 | 0.11 | 0.13 | 0.13 | 159 |
SoilGrids | 0.34 | 0.33 | 0.33 | 0.25 | 0.21 | 0.21 | 0.09 | 0.12 | 0.12 | 188 |
SPOT | Formosat-2 | DEIMOS-1 | Landsat-8 | Sentinel-2A | |
---|---|---|---|---|---|
Spatial resolution | 20 m (SPOT2-4) 10 m (SPOT5) | 8 m | 22 m | 30 m | 10 m |
Revisit frequency | Between 1 and 3 days | 1 day | Between 3 and 4 days | 16 days | 5 days |
Footprint | 60 km × 60 km | 24 km × 24 km | Up to 625 km | 170 km × 185 km | 290 km |
Wavelength (μm) | Green: [0.5–0.59]; Red: [0.61–0.68]; NIR: [0.79–0.89]; SWIR: [1.53–1.75] | Green: [0.52–0.6]; Red: [0.63–0.69]; NIR: [0.79–0.9] | Green: [0.52–0.6]; Red: [0.63–0.69]; NIR: [0.77–0.9] | Green: [0.53–0.59]; Red: [0.64–0.67]; NIR: [0.85–0.88]; SWIR1: [1.57–1.65]; SWIR2: [2.11–2.29] | Green: [0.54–0.58]; |
Red: [0.65–0.68]; | |||||
VRE1: [0.7–0.71]; | |||||
VRE2: [0.73–0.75]; | |||||
VRE3: [0.77–0.79]; | |||||
NIR: [0.72–0.95]; | |||||
Narrow NIR [0.85–0.87]; | |||||
SWIR1: [1.57–1.66]; | |||||
SWIR2: [2.11–2.29] | |||||
Viewing angle | Constant | Constant | Variable | Constant | Constant |
Model | Name | Notation | Unit | Value | Method | Source |
---|---|---|---|---|---|---|
SAFY model | Climatic efficiency | εC | - | 0.48 | Literature | Varlet grancher 1982 |
Light interception coefficient | KEXT | - | 0.8 | Literature | Flénet 96/Steer 96 | |
Minimal temperature for growth | TMIN | °C | 8 | Literature | STICS | |
Maximal temperature for growth | TMAX | °C | 42 | Literature | STICS | |
Optimal temperature for growth | TOPT | °C | 25 | Literature | STICS | |
Polynomial degree of thermal stress function | β | - | 2 | Literature | Duchemin 2008 | |
Harvest index | HI | - | 0.29 | Literature | Andrade 1995 | |
Specific leaf area | SLA | m2·g−1 | (10−3–4.10−2) | Calibration | - | |
Partition-to-leaf function parameter A | PlA | - | (0.01–0.5) | Calibration | - | |
Partition-to-leaf function parameter B | PlB | - | (10−4–10−2) | Calibration | - | |
Sum of temperature for senescence | SENA | °C | (200–1800) | Calibration | - | |
Rate of senescence | SENB | °C.d−1 | (102–3.104) | Calibration | - | |
Day of plant emergence | Emerg | day | (100–200) | Calibration | - | |
Water module | Depth of evaporative layer | DEVAP | m | 0.1 | Literature | FAO-56 Allen 1998 |
Maximum depth of the root system | DROOTS | m | 1.4 | Literature | Stone 2001 | |
Soil depth | D | m | - | Soil Data | - | |
Humidity at field capacity | θFC | m3·m−3 | - | Soil Data | - | |
Humidity at the permanent wilting point | θWP | m3·m−3 | - | Soil Data | - | |
Root mean growth rate | VR | m·°C−1 | 0.0025 | Literature | STICS | |
Evaporation coefficient A | EvA | mm−1 | 0.09 | Measurements | In situ ETR measurements | |
Evaporation coefficient B | EvB | - | 1.09 | Measurements | In situ ETR measurements | |
Evaporation coefficient C | KBS | - | 1.2 | Measurements | In situ ETR measurements | |
Maximal transpiration coefficient | KcbMAX | - | 1 | Literature | FAO-56 Allen 98 | |
Critical humidity parameter | Dfe | - | 0.41 | Literature | Casadebaig 2008 | |
Maximal vegetation fraction cover | KCOV | - | 0.92 | Measurements | ICOS site data | |
Fraction cover exponential coefficient | ECOV | - | 0.62 | Measurements | ICOS site data | |
Transpiration reduction coefficient | KTRP | 1.01 | Measure | Measurements | In situ ETR measurements | |
Carbon module | Effective light-use efficiency parameter A | ELUEA | gC·MJ−1 | [0.75–0.95] | Calibration | - |
Effective light-use efficiency parameter B | ELUEB | - | 1.14 | Measurements | In-situ measurments | |
Q10 maintenance respiration parameter | Q10 | - | 2 | Literature | Amthor 2000 | |
Reference maintenance respiration at 10 °C | R10 | gC·gDM−1 | 0.0036 | Literature | Szaniawski 1982 | |
Growth respiration conversion efficiency parameter | YG | - | 0.76 | Literature | Szaniawski 1982 | |
Root fraction parameters | f0−f∞−c | - | 0.3/0.1/1.5 | Literature | Baret 1992/Ma 2017 | |
Carbon content coefficient | CVEG | gC·gVEG−1 | 0.46 | Literature | Béziat 2009 | |
Reference heterotrophic respiration at 0 °C | RhREF | gC·m−2·d−1 | 0.34 | Literature | Suleau 2011 | |
Q10 heterotrophic respiration parameter | Q10_H | - | 2.3 | Literature | Suleau 2011 | |
Conversion factor of Tair in Tsoil | t | - | 1.07 | Measurements | ICOS site data |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pique, G.; Fieuzal, R.; Debaeke, P.; Al Bitar, A.; Tallec, T.; Ceschia, E. Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sens. 2020, 12, 2967. https://doi.org/10.3390/rs12182967
Pique G, Fieuzal R, Debaeke P, Al Bitar A, Tallec T, Ceschia E. Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sensing. 2020; 12(18):2967. https://doi.org/10.3390/rs12182967
Chicago/Turabian StylePique, Gaétan, Rémy Fieuzal, Philippe Debaeke, Ahmad Al Bitar, Tiphaine Tallec, and Eric Ceschia. 2020. "Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower" Remote Sensing 12, no. 18: 2967. https://doi.org/10.3390/rs12182967
APA StylePique, G., Fieuzal, R., Debaeke, P., Al Bitar, A., Tallec, T., & Ceschia, E. (2020). Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sensing, 12(18), 2967. https://doi.org/10.3390/rs12182967