Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Data Processing
2.3.1. NDVI
2.3.2. LST
2.3.3. TVDI
2.3.4. Mean TVDI
2.3.5. Temporal Trends of the Mean TVDI Values
3. Results
3.1. The Mean TVDI Images
3.2. The Spatiotemporal Pattern of Drought Changes
4. Discussions
4.1. An Increase in Duration of the Dry Season
4.2. Spatiotemporal Pattern of LST Changes
4.3. Drought Level Change vs. Land Use Change
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A new global database of meteorological drought events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S.; Hartfield, G. State of the Climate in 2017. Bull. Amer. Meteor. Soc. 2018, 99, S36–S37. [Google Scholar] [CrossRef]
- Alimullah Miyan, M. Droughts in Asian Least Developed Countries: Vulnerability and sustainability. Weather. Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.F.; Arnold, J.R.; Knutson, T.; Kunkel, K.E.; LeGrande, A.N. Droughts, floods, and wildfires. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 1, pp. 231–256. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.; Dai, A.; van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X. Global drought trends under 1.5 and 2 °C warming. Int. J. Climatol. 2018, 39, 2375–2385. [Google Scholar] [CrossRef]
- National Drought Mitigation Center, USA. Types of Drought. Available online: https://drought.unl.edu/Education/DroughtIn-depth/TypesofDrought.aspx (accessed on 22 April 2019).
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Niemeyer, S. New drought indices. Options Méditerr. Seri A 2008, 80, 267–274. [Google Scholar]
- Zargar, A.; Sadiq, R.; Naser, B.; Khan, F.I. A review of drought indices. Environ. Rev. 2011, 19, 333–349. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In Proceedings of the Western Snow Conference, Colorado State University, Fort Collins, CO, USA, 19–23 April 1982; pp. 164–175. [Google Scholar]
- Nalbantis, I.; Tsakiris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Su, Z.; He, Y.; Dong, X.; Wang, L. Drought monitoring and assessment using remote sensing. In Remote Sensing of Hydrological Extremes; Venkat Lakshmi; Springer: Cham, Switzerland, 2017; pp. 151–172. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A Method to Make Use of Thermal Infrared Temperature and NDVI measurements to Infer Surface Soil Water. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Carlson, T.N.; Capehart, W.J.; Gillies, R.R. A New Look at the Simplified Method for Remote-Sensing of Daily Evapotranspiration. Remote Sens. Environ. 1995, 54, 161–167. [Google Scholar] [CrossRef]
- Goetz, S.J. Multi-Sensor Analysis of NDVI, Surface Temperature and Biophysical Variables at a Mixed Grassland Site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Gillies, R.R.; Kustas, W.P.; Humes, K.S. A Verification of the ‘Triangle’ Method for Obtaining Surface Soil Water Content and Energy Fluxes from Remote Measurements of the Normalized Difference Vegetation Index (NDVI) and Surface Radiant Temperature. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Anderson, J. A simple interpretation of the surface temperature/vegetation index space for assessment of the surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Bayarjargal, Y.; Karnieli, A.; Bayasgalan, M.; Khudulmur, S.; Gandush, C.; Tucker, C.J. A comparative study of NOAA-AVHRR derived drought indices using change vector analysis. Remote Sens. Environ. 2006, 105, 9–22. [Google Scholar] [CrossRef]
- Sun, H. Two-Stage Trapezoid: A New Interpretation of the Land Surface Temperature and Fractional Vegetation Coverage Space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 336–346. [Google Scholar] [CrossRef]
- Bai, J.; Yu, Y.; Liping, D. Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China. J. Integr. Agric. 2017, 16, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Gao, W.; Chang, N. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. J. Appl. Gerontol. 2011, 13, 495–503. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agr. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Li, C.; Li, H. Study on winter wheat drought monitoring by TVDI in Hebei Province, Proc. SPIE 6298. In Remote Sensing and Modeling of Ecosystems for Sustainability III; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; p. 62981U. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The Temperature Vegetation Dryness Index (TVDI) Based on Bi-Parabolic NDVI-Ts Space and Gradient-Based Structural Similarity (GSSIM) for Long-Term Drought Assessment across Shaanxi Province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Ding, J.; Welp, M.; Huang, S.; Liu, B. Assessing the Response of Ecosystem Water Use Efficiency to Drought During and after Drought Events across Central Asia. Sensors 2020, 20, 581. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Qi, S.; Niu, Z.; Wang, J. Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Can. J. Remote Sens. 2004, 30, 671–679. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Yue, H. Biparabolic NDVI-Ts Space and Soil Moisture Remote Sensing in an Arid and Semi-arid Area. Can. J. Remote Sens. 2015, 41, 159–169. [Google Scholar] [CrossRef]
- Patel, N.R.; Anapashsha, R.; Kiumar, S.; Saha, S.K.; Dadhwal, V.K. Assessing potential of MODIS derived temperature/vegetation condition index (TVDI) to infer soil moisture status. Int. J. Remote Sens. 2009, 30, 23–39. [Google Scholar] [CrossRef]
- Wu, C.; Cao, G.; Chen, K.; E, C.Y.; Mao, Y.; Zhao, S.; Wang, Q.; Su, X.; Wei, Y. Remotely sensed estimation and mapping of soil moisture by eliminating the effect of vegetation cover. J. Integr. Agric. 2019, 18, 316–327. [Google Scholar] [CrossRef]
- Fan, L.; Xiao, Q.; Wen, J.; Liu, Q.; Tang, Y.; You, D.; Wang, H.; Gong, Z.; Li, X. Evaluation of the Airborne CASI/TASI Ts-VI Space Method for Estimating Near-Surface Soil Moisture. Remote Sens. 2015, 7, 3114–3137. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature Vegetation Dryness Index Estimation of Soil Moisture under Different Tree Species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Ti, C.; Zhao, Y.; Yan, X. Estimating Soil Moisture with Landsat Data and Its Application in Extracting the Spatial Distribution of Winter Flooded Paddies. Remote Sens. 2016, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Schirmbeck, L.W.; Fontana, D.C.; Schirmbeck, J.; Mengue, V.P. Understanding TVDI as an index that expresses soil moisture. J. Human Reprod. Sci. 2017, 7, 82–90. [Google Scholar]
- Kimura, R. Estimation of moisture availability over the Liudaogou river basin of the Loess Plateau using new indices with surface temperature. J. Arid. Environ. 2007, 70, 237–252. [Google Scholar] [CrossRef]
- Zhao, S.; Cong, D.; He, K.; Yang, H.; Qin, Z. Spatial-Temporal Variation of Drought in China from 1982 to 2010 Based on a modified Temperature Vegetation Drought Index (mTVDI). Sci. Rep. 2017, 7, 17473. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of Two Simulation Methods of the Temperature Vegetation Dryness Index (TVDI) for Drought Monitoring in Semi-Arid Regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Lv, A.; Jia, S.; Sun, L. Development and evaluation of the MTVDI for soil moisture monitoring. J. Geophys. Res. Atmos. 2017, 122, 5533–5555. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Chang, L.Y.; Minh, V.Q. Monitoring agricultural drought in the lower Mekong basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.; Qin, Z.; He, K.; Chen, C.; Luo, Y.; Zhou, X. Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Huang, C.; Zhou, Y.; Zong, S.; Hao, T.; Niu, H.; Yao, H. Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices. Remote Sens. 2020, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- General Statistics Office of Vietnam. Available online: http://www.gso.gov.vn/Default_en.aspx?tabid=491 (accessed on 22 April 2019).
- UNDRMT: UN Disaster Risk Management Team Secretariat. Viet Nam Consolidated Report on Drought and Saltwater Intrusion Reporting Period: October 2015—9 March 2016. United Nations in Vietnam. 2016. Available online: https://reliefweb.int/sites/reliefweb.int/files/resources/Vietnam%20Consolidated%20Report%20on%20Drought%202015-2016-Final_11%20Mar%202016.pdf (accessed on 22 April 2019).
- CGIAR Research Program on Climate Change, Agriculture and Food Security—Southeast Asia (CCAFS SEA). Assessment report: The drought and salinity intrusion in the mekong river delta of Vietnam.; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Hanoi, Vietnam, 2016. [Google Scholar]
- Grosjean, G.; Monteils, F.; Hamilton, S.D.; Blaustein-Rejto, D.; Gatto, M.; Talsma, T.; Bourgoin, C.; Sebastian, L.S.; Catacutan, D.; Mulia, R.; et al. Increasing Resilience to Droughts in Vietnam; The Role of Forests, Agroforests and Climate Smart Agriculture. CCAFS-CIAT-UN-REDD Position Paper n. 1; International Center for Tropical Agriculture (CIAT); CCAFS, UN, REDD: Cali, Colombia, 2016. [Google Scholar]
- Thilakarathne, M.; Sridhar, V. Characterization of future drought conditions in the Lower Mekong River Basin. Weather Clim. Extrem. 2017, 17, 47–58. [Google Scholar] [CrossRef]
- Mekong River Commission. Mekong Climate Change Adaptation Strategy and Action Plan. Vientiane: Mekong River Commission. 2018. Available online: http://www.mrcmekong.org/assets/Publications/MASAP-book-28-Aug18.pdf (accessed on 22 April 2019).
- Mekong River Commission. Drought Management Strategy for the Lower Mekong Basin 2020–2025. Vientiane: Mekong River Commission. 2019. Available online: http://www.mrcmekong.org/assets/Publications/MRC-DMS-2020–2025-Fourth-draft-V3-v2.0-_formatted.pdf (accessed on 22 April 2019).
- MODIS Surface Reflectance User’s Guide. Available online: http://modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf (accessed on 22 April 2019).
- MOD09GQ—MODIS/Terra Surface Reflectance Daily L2G Global 250 m SIN Grid. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/land-surface-reflectance/MOD09GQ/ (accessed on 22 April 2019).
- MODIS Level 1B Product User’s Guide. Available online: https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf (accessed on 22 April 2019).
- MOD21 MODIS/Terra Land Surface Temperature/3-Band Emissivity 5-Min L2 1 km V006. Available online: https://lpdaac.usgs.gov/products/mod21v006/ (accessed on 22 April 2019).
- Price, J.C. Land surface temperature measurements from the split window channel of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Vazquez, D.P.; Reyes, F.J.O.; Arboledas, L.A. A comparative study of algorithms for estimating land surface temperature from AVHRR data. Remote Sens. Environ. 1997, 62, 215–222. [Google Scholar] [CrossRef]
- Cihlar, J.; Ly, H.; Li, Z.; Chen, J.; Pokrant, H.; Hung, F. Multi-temporal, Multi-channel AVHRR data sets for land biosphere studies—Artifacts and corrections. Remote Sens. Environ. 1997, 60, 35–57. [Google Scholar] [CrossRef]
- Hong, S.; Hendrickx, J.M.H.; Borchers, B. Effect of Scaling Transfer between Evapotranspiration Maps Derived from LandSat 7 and MODIS Images. Proceedings of Targets and Backgrounds XI: Characterization and Representation Vol. 5811, Defense and Security, Orlando, Florida, USA, 28 March–1 April 2005. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. Adjustment Theory: An Introduction; VSSD: Delft, The Netherlands, 2003; pp. 39–60. [Google Scholar]
- MRC Mekong-HYCOS Project. The Mekong Hydrological Cycle Observing System Mekong-HYCOS, A Hydrological Information System in the Mekong River Basin: Project Document. WMO. 2008. Available online: https://library.wmo.int/doc_num.php?explnum_id=4698 (accessed on 22 April 2019).
- National Drought Mitigation Center. Standardized Precipitation Index. Available online: https://drought.unl.edu/droughtmonitoring/SPI.aspx (accessed on 22 April 2019).
- Tran, T.B. The Integrated System of Remote Sensing, GIS and Mathematical Model for Assessing Climate Change in Southern Vietnam; Technical Report of the ĐT.NCCB-ĐHƯD.2012-G/3 Project; Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology: Ho Chi Minh City, Vietnam, 2016. (In Vietnamese) [Google Scholar]
- Pham, T.M.T. Using VNREDSat-1 Satellite Data and Similar Imagery to Monitor Agricultural Land in the Mekong River Delta of Vietnam for Socio-Economic Development and Climate Change Adaptation. Technical Report of the VT/UD-04/13–15 Project; Ho Chi Minh City Institute of Resources Geography, Vietnam Academy of Science and Technology: Ho Chi Minh City, Vietnam, 2016. (In Vietnamese) [Google Scholar]
NDVI Class | ||||
---|---|---|---|---|
0–0.05 | 41.85 | 0.00 | 24.81 | 0.05 |
0.05–0.10 | 33.61 | 0.06 | 22.47 | 0.08 |
0.10–0.15 | 33.70 | 0.12 | 22.31 | 0.11 |
0.15– 0.20 | 31.99 | 0.17 | 22.55 | 0.20 |
0.20–0.25 | 35.41 | 0.24 | 22.09 | 0.23 |
0.25–0.30 | 35.28 | 0.28 | 22.68 | 0.27 |
0.30–0.35 | 34.54 | 0.34 | 21.85 | 0.32 |
0.35–0.40 | 34.33 | 0.38 | 22.38 | 0.36 |
0.40–0.45 | 34.81 | 0.44 | 21.81 | 0.42 |
0.45–0.50 | 33.79 | 0.47 | 21.64 | 0.46 |
0.50–0.55 | 34.23 | 0.53 | 22.40 | 0.51 |
0.55–0.60 | 32.65 | 0.58 | 18.84 | 0.59 |
0.60–0.65 | 32.99 | 0.62 | 19.82 | 0.61 |
0.65–0.70 | 30.87 | 0.65 | 19.80 | 0.66 |
0.70–0.75 | 29.45 | 0.71 | 22.13 | 0.71 |
0.75–0.80 | 31.22 | 0.76 | 22.55 | 0.78 |
0.80–0.85 | 27.02 | 0.81 | 23.85 | 0.81 |
0.85–0.90 | 26.15 | 0.85 | 23.68 | 0.88 |
0.90–0.95 | 24.23 | 0.90 | 24.23 | 0.90 |
0.95–1.00 | - | - | - | - |
Year | No. of Images | Mean TVDI | StdDev TVDI |
---|---|---|---|
2001 | 7 | 0.72 | 0.13 |
2002 | 27 | 0.58 | 0.19 |
2003 | 16 | 0.62 | 0.20 |
2004 | 23 | 0.67 | 0.21 |
2005 | 34 | 0.63 | 0.21 |
2006 | 15 | 0.62 | 0.15 |
2007 | 23 | 0.69 | 0.17 |
2008 | 17 | 0.71 | 0.21 |
2009 | 10 | 0.75 | 0.20 |
2010 | 11 | 0.63 | 0.14 |
2011 | 13 | 0.78 | 0.10 |
2012 | 10 | 0.75 | 0.23 |
2013 | 14 | 0.86 | 0.11 |
2014 | 14 | 0.83 | 0.13 |
2015 | 10 | 0.73 | 0.15 |
Year | Wet | Normal | Light | Moderate | High |
---|---|---|---|---|---|
2001 | 0.01% | 0.65% | 62.90% | 35.97% | 0.48% |
2002 | 0.00% | 1.53% | 74.50% | 23.17% | 0.80% |
2003 | 0.00% | 0.09% | 60.51% | 38.84% | 0.56% |
2004 | 0.01% | 0.52% | 51.01% | 47.60% | 0.87% |
2005 | 0.00% | 1.87% | 82.10% | 16.01% | 0.02% |
2006 | 0.01% | 1.60% | 79.29% | 19.01% | 0.09% |
2007 | 0.00% | 13.30% | 67.66% | 18.28% | 0.77% |
2008 | 0.00% | 0.31% | 53.76% | 45.74% | 0.18% |
2009 | 0.01% | 1.16% | 43.84% | 53.94% | 1.05% |
2010 | 0.00% | 0.99% | 69.04% | 29.35% | 0.61% |
2011 | 0.01% | 0.64% | 57.07% | 40.73% | 1.55% |
2012 | 0.01% | 0.39% | 49.75% | 49.56% | 0.30% |
2013 | 0.02% | 0.70% | 66.93% | 30.95% | 1.40% |
2014 | 0.00% | 2.27% | 60.83% | 35.33% | 1.56% |
2015 | 0.19% | 7.29% | 76.25% | 15.03% | 1.25% |
Average | 0.02% | 2.45% | 62.08% | 34.60% | 0.85% |
<−0.02 | −0.02–−0.01 | −0.01–−0.005 | −0.005–0.005 | 0.005–0.01 | 0.01–0.02 | >0.02 | Total Area (km2) | |
---|---|---|---|---|---|---|---|---|
An Giang | 39 | 109 | 187 | 2857 | 321 | 29 | 0 | 3542 |
Bac Lieu | 9 | 359 | 267 | 1708 | 9 | 0 | 0 | 2351 |
Ben Tre | 0 | 10 | 43 | 2158 | 260 | 6 | 1 | 2478 |
Ca Mau | 0 | 4 | 97 | 4981 | 179 | 9 | 0 | 5270 |
Can Tho | 0 | 0 | 0 | 1014 | 338 | 85 | 0 | 1437 |
Hau Giang | 0 | 0 | 7 | 2350 | 930 | 97 | 0 | 3383 |
Dong Thap | 0 | 0 | 16 | 1006 | 532 | 64 | 0 | 1617 |
Long An | 0 | 74 | 725 | 5299 | 193 | 23 | 0 | 6314 |
Kien Giang | 1 | 532 | 722 | 3086 | 185 | 20 | 0 | 4546 |
Soc Trang | 2 | 195 | 570 | 2294 | 244 | 3 | 0 | 3307 |
Tien Giang | 3 | 11 | 64 | 1773 | 525 | 57 | 0 | 2433 |
Tra Vinh | 3 | 215 | 430 | 1652 | 71 | 0 | 0 | 2371 |
Vinh Long | 0 | 2 | 2 | 851 | 587 | 106 | 2 | 1549 |
Total area (km2) | 57 | 1713 | 3197 | 30712 | 4414 | 505 | 3 | 40600 |
Percentage | 0.14% | 4.22% | 7.87% | 75.64% | 10.87% | 1.24% | 0.01% | 100.00% |
Year | Can Tho | Dong Thap | ||||
---|---|---|---|---|---|---|
R-3 (mm) | SPI-3 | TVDI | R-3 (mm) | SPI-3 | TVDI | |
2001 | 113.1 | 1.35 | 0.59 | 58.9 | 0.70 | 0.64 |
2002 | 0 | −1.57 | 0.70 | 0 | −1.05 | 0.64 |
2003 | 0.5 | −1.24 | 0.68 | 1.6 | −0.79 | 0.70 |
2004 | 32.5 | 0.29 | 0.73 | 0 | −1.05 | 0.69 |
2005 | 4.8 | −0.66 | 0.64 | 0.2 | −0.98 | 0.59 |
2006 | 119.4 | 1.41 | 0.68 | 63.6 | 0.76 | 0.68 |
2007 | 98.3 | 1.20 | 0.72 | 108 | 1.24 | 0.66 |
2008 | 25.8 | 0.14 | 0.77 | 108.7 | 0.35 | 0.67 |
2009 | 98.7 | 1.11 | 0.79 | 89 | 1.05 | 0.83 |
2010 | 15.3 | −0.15 | 0.75 | 31 | 0.25 | 0.73 |
2011 | 105.7 | 1.28 | 0.82 | 90.8 | 1.07 | 0.74 |
2012 | 151.4 | 1.68 | 0.81 | 32.3 | 0.27 | 0.79 |
2013 | 18.8 | −0.04 | 0.71 | 12.1 | −0.23 | 0.76 |
2014 | 1.4 | −1.03 | 0.82 | 1.4 | −0.81 | 0.78 |
2015 | 0 | −1.57 | 0.80 | 0 | −0.85 | 0.73 |
Rates of LST Change Per Year | ≤−0.2 | −0.2–−0.1 | −0.1–0.1 | 0.1–0.2 | >+0.2 | Total Area (km2) |
---|---|---|---|---|---|---|
An Giang | 74 | 51 | 2959 | 414 | 44 | 3542 |
Ben Tre | 3 | 13 | 1668 | 646 | 23 | 2351 |
Bac Lieu | 190 | 197 | 976 | 929 | 186 | 2478 |
Ca Mau | 0 | 5 | 1486 | 2583 | 1196 | 5270 |
Can Tho | 0 | 0 | 294 | 955 | 188 | 1437 |
Dong Thap | 0 | 2 | 1465 | 1559 | 358 | 3383 |
Hau Giang | 0 | 0 | 252 | 1129 | 236 | 1617 |
Kien Giang | 45 | 413 | 3305 | 2120 | 431 | 6314 |
Long An | 12 | 272 | 3870 | 361 | 33 | 4546 |
Soc Trang | 60 | 216 | 1648 | 1256 | 128 | 3307 |
Tien Giang | 0 | 14 | 1266 | 909 | 244 | 2433 |
Tra Vinh | 150 | 219 | 1616 | 379 | 7 | 2371 |
Vinh Long | 0 | 0 | 122 | 1205 | 221 | 1549 |
Total area (km2) | 534 | 1401 | 20926 | 14445 | 3294 | 40600 |
Percentage (%) | 1.32 | 3.45 | 51.54 | 35.58 | 8.11 | 100.00 |
Land Use in 2000 (km2) | Land Use in 2015 (km2) | |||||||
---|---|---|---|---|---|---|---|---|
Province | Paddy, Annual Crops | Perennial Trees | Forest | Resident | Paddy, Annual Crops | Perennial Trees | Forest | Resident |
An Giang | 5172.2 | 286.7 | 106.8 | 15.7 | 5479.5 | 364.2 | 81.6 | 56.3 |
Bac Lieu | 2194.2 | 222.5 | 11.1 | 3.3 | 1487.3 | 20.3 | 8.8 | 3.2 |
Ben Tre | 731.8 | 1214.2 | 35.2 | 7.4 | 545.5 | 1141.5 | 55.8 | 28.5 |
Ca Mau | 2095.1 | 288.5 | 857.2 | 8.4 | 905.1 | 82.3 | 731.6 | 19.3 |
Can Tho | 4050.0 | 565.6 | 20.9 | 20.5 | 1992.6 | 244.7 | 0.0 | 91.3 |
Hau Giang (*) | - | - | - | - | 2037.3 | 427.7 | 0.0 | 11.1 |
Dong Thap | 5148.0 | 322.7 | 118.3 | 7.8 | 5036.3 | 345.0 | 113.0 | 60.4 |
Long An | 5111.8 | 939.0 | 319.3 | 15.0 | 5554.1 | 1030.8 | 234.3 | 168.9 |
Kien Giang | 5621.1 | 1287.0 | 387.5 | 15.6 | 6667.5 | 431.1 | 362.1 | 58.5 |
Soc trang | 3492.1 | 819.1 | 77.3 | 12.3 | 3209.4 | 848.9 | 92.9 | 9.3 |
Tien Giang | 1997.9 | 1,038.7 | 61.7 | 17.7 | 1864.3 | 1025.4 | 27.2 | 77.7 |
Tra Vinh | 2138.6 | 485.7 | 10.9 | 3.7 | 2020.9 | 431.6 | 31.5 | 5.6 |
Vinh Long | 1832.6 | 374.1 | 0.0 | 11.4 | 1249.1 | 457.7 | 0.0 | 60.8 |
Area of Land-Use Types (km2) | In 2005 | In 2014 |
---|---|---|
Paddy land, land for cultivation of annual crops | 16,127.1 | 15,105.9 |
Land for cultivation of perennial trees | 6686.8 | 5262.2 |
Aquaculture land | 1885.0 | 2110.3 |
Forest land | 1492.6 | 866.2 |
Water surface | 1201.6 | 1084.1 |
Others | 573.4 | 3537.7 |
Total | 27,966.4 | 27,966.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, V.H.; Dinh, V.T.; Su, Z. Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. Remote Sens. 2020, 12, 2974. https://doi.org/10.3390/rs12182974
Phan VH, Dinh VT, Su Z. Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. Remote Sensing. 2020; 12(18):2974. https://doi.org/10.3390/rs12182974
Chicago/Turabian StylePhan, Vu Hien, Vi Tung Dinh, and Zhongbo Su. 2020. "Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam" Remote Sensing 12, no. 18: 2974. https://doi.org/10.3390/rs12182974
APA StylePhan, V. H., Dinh, V. T., & Su, Z. (2020). Trends in Long-Term Drought Changes in the Mekong River Delta of Vietnam. Remote Sensing, 12(18), 2974. https://doi.org/10.3390/rs12182974