Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analytical Process
2.3. Data Acquisition and Preparation
2.3.1. Harmonised NDVI (H-NDVI)
2.3.2. Amplitude
2.3.3. Phase
2.4. The Model
2.4.1. Random Forest (RF) Classification Model
2.4.2. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy. Eur. J. Remote Sens. 2016, 49, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Bozbek, T.; Sezener, V.; Unay, A. The effect of sowing date and plant density on cotton yield. J. Agron. 2006, 5, 122–125. [Google Scholar]
- Williams, A.; Mushtaq, S.; Kouadio, L.; Power, B.; Marcussen, T.; McRae, D.; Cockfield, G. An investigation of farm-scale adaptation options for cotton production in the face of future climate change and water allocation policies in southern Queensland, Australia. Agric. Water Manag. 2018, 196, 124–132. [Google Scholar] [CrossRef]
- Cotton Australia. Statistics. Available online: https://cottonaustralia.com.au/statistics (accessed on 15 April 2020).
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Zhong, L.; Gong, P.; Biging, G.S. Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s Central Valley. Photogramm. Eng. Remote Sens. 2012, 78, 799–813. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liu, H.; Peng, S. Detection of Cropland Change Using Multi-Harmonic Based Phenological Trajectory Similarity. Remote Sens. 2018, 10, 1020. [Google Scholar] [CrossRef] [Green Version]
- Chua, R.; Qingbin, X.; Bo, Y. Crop Monitoring Using Multispectral Optical Satellite Imagery; Twenty First Century Aerospace Technology (Asia) Pte. Ltd.: Singapore, 2017. [Google Scholar]
- Dadhwal, V.; Singh, R.; Dutta, S.; Parihar, J. Remote sensing based crop inventory: A review of Indian experience. Trop. Ecol. 2002, 43, 107–122. [Google Scholar]
- Shrivastava, R.J.; Gebelein, J.L. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS J. Photogramm. Remote Sens. 2007, 61, 341–353. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Dash, J.; Atkinson, P.M. Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sens. 2015, 7, 9390–9409. [Google Scholar] [CrossRef] [Green Version]
- Serra, P.; Pons, X. Monitoring farmers’ decisions on Mediterranean irrigated crops using satellite image time series. Int. J. Remote Sens. 2008, 29, 2293–2316. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Mingwei, Z.; Qingbo, Z.; Zhongxin, C.; Jia, L.; Yong, Z.; Chongfa, C. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 476–485. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Crop identification using harmonic analysis of time-series AVHRR NDVI data. Comput. Electron. Agric. 2002, 37, 127–139. [Google Scholar] [CrossRef]
- Immerzeel, W.; Quiroz, R.; De Jong, S. Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series. Int. J. Remote Sens. 2005, 26, 2281–2296. [Google Scholar] [CrossRef]
- Rudorff, B.F.T.; Adami, M.; De Aguiar, D.A.; Gusso, A.; Da Silva, W.F.; De Freitas, R.M. Temporal series of EVI/MODIS to identify land converted to sugarcane. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. IV-252–IV-255. [Google Scholar]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1985; Volume 19, p. 144. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Webb, G.I. Naïve Bayes. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 713–714. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Li, H.; Wan, W.; Fang, Y.; Zhu, S.Y.; Chen, X.; Liu, B.J.; Hong, Y. A Google Earth Engine-enabled software for efficiently generating high-quality user-ready Landsat mosaic images. Environ. Model. Softw. 2019, 112, 16–22. [Google Scholar] [CrossRef]
- Yalew, S.G.; van Griensven, A.; van der Zaag, P. AgriSuit: A web-based GIS-MCDA framework for agricultural land suitability assessment. Comput. Electron. Agric. 2016, 128, 1–8. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Large Scale Crop Classification Using Google Earth Engine Platform. Int. Geosci. Remote Sens. Symp. 2017, 3696–3699. [Google Scholar] [CrossRef]
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Waldner, F.; Lambert, M.-J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land cover and crop type classification along the season based on biophysical variables retrieved from multi-sensor high-resolution time series. Remote Sens. 2015, 7, 10400–10424. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Wu, M.; Niu, Z.; Wang, L.; Zhan, Y. Estimation of different data compositions for early-season crop type classification. PeerJ 2018, 6, e4834. [Google Scholar] [CrossRef]
- Howard, D.M.; Wylie, B.K. Annual crop type classification of the US Great Plains for 2000 to 2011. Photogramm. Eng. Remote Sens. 2014, 80, 537–549. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-validation methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Peña, M.; Brenning, A. Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile. Remote Sens. Environ. 2015, 171, 234–244. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Lira Melo de Oliveira Santos, C.; Augusto Camargo Lamparelli, R.; Kelly Dantas Araújo Figueiredo, G.; Dupuy, S.; Boury, J.; Luciano, A.C.; Torres, R.D.; Le Maire, G. Classification of crops, pastures, and tree plantations along the season with multi-sensor image time series in a subtropical agricultural region. Remote Sens. 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Gumma, M.K.; Teluguntla, P.; Poehnelt, J.; Congalton, R.G.; Yadav, K.; Thau, D. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens. 2017, 126, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J., Jr. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA: Washington, DC, USA, 1972.
- Cai, Z.; Jönsson, P.; Jin, H.; Eklundh, L. Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens. 2017, 9, 1271. [Google Scholar] [CrossRef] [Green Version]
- Høgda, K.A.; Tømmervik, H.; Karlsen, S.R. Trends in the start of the growing season in Fennoscandia 1982–2011. Remote Sens. 2013, 5, 4304–4318. [Google Scholar] [CrossRef] [Green Version]
- Slabaugh, G.G. Computing Euler angles from a rotation matrix. Retrieved August 1999, 6, 39–63. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Lucas, I.; Janssen, F.; van der Wel, F.J. Accuracy assessment ofsatellite derived landcover data: A review. Photogramm. Eng. Remote Sens. 1994, 60, 426–479. [Google Scholar]
- Brennan, R.L.; Prediger, D.J. Coefficient kappa: Some uses, misuses, and alternatives. Educ. Psychol. Meas. 1981, 41, 687–699. [Google Scholar] [CrossRef]
- Shao, G.; Wu, J. On the accuracy of landscape pattern analysis using remote sensing data. Landsc. Ecol. 2008, 23, 505–511. [Google Scholar] [CrossRef]
- Rossiter, D. Technical Note: Statistical Methods for Accuracy Assessment of Classified Thematic Maps; International Institute for Geo-information Science & Earth Observation (ITC): Enschede, The Netherlands, 2004. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Manual on Setting Up, Using, and Understanding Random Forests v3. 1; Statistics Department University of California Berkeley: Berkeley, CA, USA, 2002; Volume 1, p. 58. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Han, H.; Guo, X.; Yu, H. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. In Proceedings of the 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 26–28 August 2016; pp. 219–224. [Google Scholar]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
- Pascual-Granado, J.; Garrido, R.; Suarez, J.C. MIARMA: A minimal-loss information method for filling gaps in time series Application to CoRoT light curves. Astron. Astrophys. 2015, 575, A78. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.T.; Knight, J.F.; McRoberts, R.E. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 29–46. [Google Scholar] [CrossRef]
- Wagenseil, H.; Samimi, C. Assessing spatio-temporal variations in plant phenology using Fourier analysis on NDVI time series: Results from a dry savannah environment in Namibia. Int. J. Remote Sens. 2006, 27, 3455–3471. [Google Scholar] [CrossRef]
- Picoli, M.C.A.; Camara, G.; Sanches, I.; Simoes, R.; Carvalho, A.; Maciel, A.; Coutinho, A.; Esquerdo, J.; Antunes, J.; Begotti, R.A.; et al. Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS J. Photogramm. Remote Sens. 2018, 145, 328–339. [Google Scholar] [CrossRef]
- Sun, C.L.; Bian, Y.; Zhou, T.; Pan, J.L. Using of Multi-Source and Multi-Temporal Remote Sensing Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sensors 2019, 19, 2401. [Google Scholar] [CrossRef] [Green Version]
- Vaudour, E.; Noirot-Cosson, P.; Membrive, O. Early-season mapping of crops and cultural operations using very high spatial resolution Pléiades images. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 128–141. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden Markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef] [Green Version]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- Jakubauskas, M.E.; Legates, D.R.; Kastens, J.H. Harmonic analysis of time-series AVHRR NDVI data. Photogramm. Eng. Remote Sens. 2001, 67, 461–470. [Google Scholar]
- Negrón Juárez, R.I.; T. Liu, W. FFT analysis on NDVI annual cycle and climatic regionality in Northeast Brazil. Int. J. Climatol. J. R. Meteorol. Soc. 2001, 21, 1803–1820. [Google Scholar] [CrossRef]
Selected Metric Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
Bands 1 to 11 | ✓ | ✕ | ✕ | ✕ | ✓ |
H-NDVI | ✕ | ✓ | ✕ | ✓ | ✓ |
Amplitude | ✕ | ✕ | ✓ | ✓ | ✓ |
Phase | ✕ | ✕ | ✓ | ✓ | ✓ |
Model | Period | OA | Kappa | UA | PA | CE | OE |
---|---|---|---|---|---|---|---|
Surface reflectance bands | Early | 0.97 | 0.96 | 0.99 | 0.99 | 0.01 | 0.01 |
H-NDVI only | 0.59 | 0.43 | 0.71 | 0.71 | 0.29 | 0.29 | |
Amplitude and phase | 0.85 | 0.79 | 0.98 | 0.98 | 0.02 | 0.02 | |
HNDVI, amplitude and phase | 0.89 | 0.85 | 0.99 | 0.99 | 0.001 | 0.001 | |
H-NDVI, amplitude, phase and surface reflectance bands | 0.97 | 0.96 | 0.99 | 0.99 | 0.01 | 0.01 | |
Surface reflectance bands | Mid | 0.97 | 0.96 | 0.99 | 0.99 | 0.01 | 0.01 |
HNDVI | 0.49 | 0.30 | 0.54 | 0.53 | 0.46 | 0.47 | |
amplitude and phase | 0.85 | 0.79 | 0.98 | 0.98 | 0.02 | 0.02 | |
HNDVI, amplitude and phase | 0.89 | 0.85 | 0.99 | 0.99 | 0.01 | 0.01 | |
H-NDVI, amplitude, phase and surface reflectance bands | 0.97 | 0.96 | 0.99 | 0.99 | 0.01 | 0.01 | |
Surface reflectance bands | Late | 0.97 | 0.97 | 0.99 | 0.99 | 0.01 | 0.01 |
HNDVI | 0.56 | 0.39 | 0.65 | 0.65 | 0.35 | 0.35 | |
amplitude and phase | 0.85 | 0.79 | 0.98 | 0.98 | 0.02 | 0.02 | |
HNDVI, amplitude and phase | 0.89 | 0.85 | 0.98 | 0.98 | 0.02 | 0.02 | |
H-NDVI, amplitude, phase and surface reflectance bands | 0.98 | 0.97 | 0.99 | 0.99 | 0.01 | 0.01 |
Model | Period | OA | Kappa | UA | PA | CE | OE |
---|---|---|---|---|---|---|---|
2013/2014 | |||||||
Surface reflectance bands only | Early | 0.56 | 0.01 | 0.99 | 0.56 | 0.01 | 0.44 |
Mid | 0.90 | 0.22 | 0.90 | 0.92 | 0.1 | 0.8 | |
Late | 0.92 | 0.48 | 0.90 | 0.90 | 0.1 | 0.1 | |
H-NDVI only | Early | 0.43 | 0.22 | 0.51 | 0.18 | 0.48 | 0.81 |
Mid | 0.53 | 0.31 | 0.90 | 0.34 | 0.09 | 0.65 | |
Late | 0.55 | 0.42 | 0.75 | 0.32 | 0.24 | 0.67 | |
Amplitude and phase | Early | 0.63 | 0.45 | 0.90 | 0.56 | 0.1 | 0.43 |
Mid | 0.81 | 0.71 | 0.95 | 0.97 | 0.15 | 0.06 | |
Late | 0.95 | 0.91 | 0.99 | 0.99 | 0.01 | 0.01 | |
H-NDVI, amplitude and phase | Early | 0.59 | 0.34 | 0.95 | 0.40 | 0.04 | 0.59 |
Mid | 0.97 | 0.95 | 0.99 | 0.97 | 0.01 | 0.02 | |
Late | 0.99 | 0.99 | 0.99 | 0.99 | 0.01 | 0.01 | |
H-NDVI, amplitude, phase and reflectance bands | Early | 0.60 | 0.45 | 0.91 | 0.41 | 0.08 | 0.69 |
Mid | 0.95 | 0.92 | 0.98 | 0.98 | 0.01 | 0.01 | |
Late | 0.98 | 0.96 | 0.97 | 0.99 | 0.02 | 0.01 | |
2014/2015 | |||||||
Surface reflectance bands only | Early | 0.55 | 0.24 | 0.99 | 0.23 | 0.01 | 0.77 |
Mid | 0.59 | 0.27 | 0.98 | 0.31 | 0.02 | 0.69 | |
Late | 0.82 | 0.60 | 0.99 | 0.71 | 0.01 | 0.29 | |
H-NDVI only | Early | 0.47 | 0.10 | 0.53 | 0.71 | 0.46 | 0.28 |
Mid | 0.50 | 0.12 | 0.55 | 0.78 | 0.44 | 0.21 | |
Late | 0.56 | 0.20 | 0.54 | 0.73 | 0.45 | 0.26 | |
Amplitude and phase | Early | 0.68 | 0.42 | 0.80 | 0.92 | 0.19 | 0.07 |
Mid | 0.90 | 0.77 | 0.96 | 0.85 | 0.03 | 0.15 | |
Late | 0.91 | 0.91 | 0.95 | 0.96 | 0.05 | 0.04 | |
H-NDVI, amplitude and phase | Early | 0.73 | 0.52 | 0.82 | 0.70 | 0.17 | 0.32 |
Mid | 0.90 | 0.81 | 0.86 | 0.99 | 0.13 | 0.01 | |
Late | 0.97 | 0.94 | 0.99 | 0.97 | 0.009 | 0.021 | |
H-NDVI, amplitude, phase and reflectance bands | Early | 0.84 | 0.60 | 0.90 | 0.89 | 0.01 | 0.03 |
Mid | 0.95 | 0.90 | 0.95 | 0.96 | 0.01 | 0.04 | |
Late | 0.98 | 0.96 | 0.99 | 0.99 | 0.002 | 0.01 | |
2019/2020 | |||||||
Surface reflectance bands only | Early | 0.59 | 0.21 | 0.75 | 0.18 | 0.25 | 0.82 |
Mid | 0.67 | 0.31 | 0.99 | 0.26 | 0.01 | 0.74 | |
Late | 0.70 | 0.43 | 0.93 | 0.36 | 0.07 | 0.64 | |
H-NDVI only | Early | 0.50 | 0.13 | 0.73 | 0.75 | 0.26 | 0.24 |
Mid | 0.52 | 0.21 | 0.83 | 0.51 | 0.16 | 0.55 | |
Late | 0.51 | 0.24 | 0.66 | 0.57 | 0.33 | 0.42 | |
Amplitude and phase | Early | 0.54 | 0.35 | 0.78 | 0.12 | 0.21 | 0.80 |
Mid | 0.70 | 0.45 | 0.98 | 0.50 | 0.01 | 0.58 | |
Late | 0.93 | 0.89 | 0.96 | 0.94 | 0.02 | 0.03 | |
H-NDVI, amplitude and phase | Early | 0.73 | 0.48 | 0.92 | 0.67 | 0.7 | 0.32 |
Mid | 0.80 | 0.55 | 0.78 | 0.88 | 0.11 | 0.12 | |
Late | 0.93 | 0.85 | 0.98 | 0.95 | 0.02 | 0.04 | |
H-NDVI, amplitude, phase and reflectance bands | Early | 0.60 | 0.35 | 0.66 | 0.70 | 0.44 | 0.37 |
Mid | 0.86 | 0.74 | 0.95 | 0.76 | 0.04 | 0.26 | |
Late | 0.96 | 0.93 | 0.97 | 0.96 | 0.02 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shammari, D.; Fuentes, I.; M. Whelan, B.; Filippi, P.; F. A. Bishop, T. Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery. Remote Sens. 2020, 12, 3038. https://doi.org/10.3390/rs12183038
Al-Shammari D, Fuentes I, M. Whelan B, Filippi P, F. A. Bishop T. Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery. Remote Sensing. 2020; 12(18):3038. https://doi.org/10.3390/rs12183038
Chicago/Turabian StyleAl-Shammari, Dhahi, Ignacio Fuentes, Brett M. Whelan, Patrick Filippi, and Thomas F. A. Bishop. 2020. "Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery" Remote Sensing 12, no. 18: 3038. https://doi.org/10.3390/rs12183038
APA StyleAl-Shammari, D., Fuentes, I., M. Whelan, B., Filippi, P., & F. A. Bishop, T. (2020). Mapping of Cotton Fields Within-Season Using Phenology-Based Metrics Derived from a Time Series of Landsat Imagery. Remote Sensing, 12(18), 3038. https://doi.org/10.3390/rs12183038