Editorial for Special Issue “Tropical Cyclones Remote Sensing and Data Assimilation”
Abstract
:Funding
Acknowledgments
Conflicts of Interest
References
- Xu, X.; Dong, X.; Xie, Y. On-Board Wind Scatterometry. Remote Sens. 2020, 12, 1216. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Im, J.; Cha, D.-H.; Park, H.; Sim, S. Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural Networks from Geostationary Satellite Data. Remote Sens. 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, B.; Zhang, J.A.; Perrie, W. Examination of Surface Wind Asymmetry in Tropical Cyclones over the Northwest Pacific Ocean Using SMAP Observations. Remote Sens. 2019, 11, 2604. [Google Scholar] [CrossRef] [Green Version]
- He, G.; Sun, J.; Ying, Z.; Zhang, L. A Radar Radial Velocity Dealiasing Algorithm for Radar Data Assimilation and its Evaluation with Observations from Multiple Radar Networks. Remote Sens. 2019, 11, 2457. [Google Scholar] [CrossRef] [Green Version]
- Ning, J.; Xu, Q.; Feng, T.; Zhang, H.; Wang, T. Upper Ocean Response to Two Sequential Tropical Cyclones over the Northwestern Pacific Ocean. Remote Sens. 2019, 11, 2431. [Google Scholar] [CrossRef] [Green Version]
- Haakman, K.; Sayol, J.-M.; van der Boog, C.G.; Katsman, C.A. Statistical Characterization of the Observed Cold Wake Induced by North Atlantic Hurricanes. Remote Sens. 2019, 11, 2368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, X.; Wu, R.; Liu, F.; Yu, L.; Shang, X.; Qi, Y.; Wang, Y.; Song, X.; Xie, X.; et al. Ocean Response to Successive Typhoons Sarika and Haima (2016) Based on Data Acquired via Multiple Satellites and Moored Array. Remote Sens. 2019, 11, 2360. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tang, D.; Evgeny, M. Chlorophyll Concentration Response to the Typhoon Wind-Pump Induced Upper Ocean Processes Considering Air–Sea Heat Exchange. Remote Sens. 2019, 11, 1825. [Google Scholar] [CrossRef] [Green Version]
- Xiang, K.; Yang, X.; Zhang, M.; Li, Z.; Kong, F. Objective Estimation of Tropical Cyclone Intensity from Active and Passive Microwave Remote Sensing Observations in the Northwestern Pacific Ocean. Remote Sens. 2019, 11, 627. [Google Scholar] [CrossRef] [Green Version]
- Sapp, J.W.; Alsweiss, S.O.; Jelenak, Z.; Chang, P.S.; Carswell, J. Stepped Frequency Microwave Radiometer Wind-Speed Retrieval Improvements. Remote Sens. 2019, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Fang, S.; Li, X.; Wu, R.; Zheng, H. Seismological Observations of Ocean Swells Induced by Typhoon Megi Using Dispersive Microseisms Recorded in Coastal Areas. Remote Sens. 2018, 10, 1437. [Google Scholar] [CrossRef] [Green Version]
- Shao, W.; Hu, Y.; Yang, J.; Nunziata, F.; Sun, J.; Li, H.; Zuo, J. An Empirical Algorithm to Retrieve Significant Wave Height from Sentinel-1 Synthetic Aperture Radar Imagery Collected under Cyclonic Conditions. Remote Sens. 2018, 10, 1367. [Google Scholar] [CrossRef] [Green Version]
- Fore, A.G.; Yueh, S.H.; Stiles, B.W.; Tang, W.; Hayashi, A.K. On Extreme Winds at L-Band with the SMAP Synthetic Aperture Radar. Remote Sens. 2019, 11, 1093. [Google Scholar] [CrossRef] [Green Version]
- Sriver, R.L.; Huber, M. Modeled sensitivity of upper thermocline properties to tropical cyclone winds and possible feedbacks on the Hadley circulation. Geophys. Res. Lett. 2010, 37, L08704. [Google Scholar] [CrossRef] [Green Version]
- Spencer, M.W.; Tsai, W.Y.; Long, D.G. High-resolution measurements with a spaceborne pencil-beam scatterometer using combined range/Doppler discrimination techniques. IEEE Trans. Geosci. Remote Sens. 2003, 41, 567–581. [Google Scholar] [CrossRef]
- Stoffelen, A.; Anderson, D. 1997: Scatterometer Data Interpretation: Measurement Space and Inversion. J. Atmos. Oceanic Technol. 1997, 14, 1298–1313. [Google Scholar] [CrossRef]
- He, J. CINRAD WSR-98D and its ground clutter filter design. In Proceedings of the 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559), Beijing, China, 15–18 October 2001; pp. 1186–1189. [Google Scholar] [CrossRef]
- Stiles, B.W.; Yueh, S.H. Impact of Rain on Spaceborne Ku-band Wind Scatterometer data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1973–1983. [Google Scholar] [CrossRef]
- Fernandez, D.; Esteban; Carswell, J.R.; Frasier, S.; Chang, P.S.; Black, P.G.; Marks, F.D. Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds. J. Geophys. Res. 2006, 111, C8. [Google Scholar] [CrossRef] [Green Version]
- Fore, A.G.; Yueh, S.H.; Stiles, B.W.; Tang, W.; Hayashi, A.K. SMAP Radiometer-Only Tropical Cyclone Intensity and Size Validation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1480–1484. [Google Scholar] [CrossRef]
- Tang, W.; Fore, A.; Yueh, S.; Lee, T.; Hayashi, A.; Sanchez-Franks, A.; Martinez, J.; King, B.; Baranowski, D. Validating SMAP SSS with in situ measurements. Remote Sens. Environ. 2017, 200, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Zieger, S.; Vinoth, J.; Young, I.R. Joint Calibration of Multiplatform Altimeter Measurements of Wind Speed and Wave Height over the Past 20 Years. J. Atmos. Oceanic Technol. 2009, 26, 2549–2564. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High Resolution Blended Analysis for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Wentz, F.; Gentemann, C.; Smith, D.; Chelton, D. Satellite Measurements of Sea Surface Temperature Through Clouds. Science 2000, 288, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, V.F. Tropical cyclone intensity analysis using satellite data. In NOAA Technical Report NESDIS, 11; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service: Washington, DC, USA, 1984; pp. 1–47. [Google Scholar]
- Menzel, W.P.; Purdom, J.F. Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites. Bull. Am. Meteorol. Soc. 1994, 75, 757–781. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiles, B.W.; Portabella, M.; Yang, X.; Zheng, G. Editorial for Special Issue “Tropical Cyclones Remote Sensing and Data Assimilation”. Remote Sens. 2020, 12, 3067. https://doi.org/10.3390/rs12183067
Stiles BW, Portabella M, Yang X, Zheng G. Editorial for Special Issue “Tropical Cyclones Remote Sensing and Data Assimilation”. Remote Sensing. 2020; 12(18):3067. https://doi.org/10.3390/rs12183067
Chicago/Turabian StyleStiles, Bryan W., Marcos Portabella, Xiaofeng Yang, and Gang Zheng. 2020. "Editorial for Special Issue “Tropical Cyclones Remote Sensing and Data Assimilation”" Remote Sensing 12, no. 18: 3067. https://doi.org/10.3390/rs12183067
APA StyleStiles, B. W., Portabella, M., Yang, X., & Zheng, G. (2020). Editorial for Special Issue “Tropical Cyclones Remote Sensing and Data Assimilation”. Remote Sensing, 12(18), 3067. https://doi.org/10.3390/rs12183067