Comparison of Empirical and Physical Modelling for Estimation of Biochemical and Biophysical Vegetation Properties: Field Scale Analysis across an Arctic Bioclimatic Gradient
Abstract
:1. Introduction
- compare multi-angle vegetation spectra and measurements of leaf and canopy chlorophyll (LCC, CCC, respectively) and plant area index (PAI) at various locations in the Western Canadian Arctic that represent a latitudinal climate gradient;
- compare parametric linear regression combined with common VIs to non-linear non-parametric machine learning (GPR) for estimation of LCC, PAI, and CCC at all view angles and sites;
- compare the empirical modelling results to PROSAIL models inverted by LM and LUT methods;
- assess the effect of resampling spectral resolution and scaling-up field measurements on model results.
2. Study Sites
3. Methods
3.1. Field Sampling Design
3.2. Field Measurements of Leaf Chlorophyll Content (LCC)
3.3. Field Measurements of PAI and Calculation of Canopy Leaf Chlorophyll Content (CCC)
3.4. Field Spectral Reflectance Measurements and CHRIS/PROBA Simulation
3.5. Empirical Data Analysis and Modelling
3.5.1. Parametric Linear Regression: Vegetation Indices
3.5.2. Non-Parametric Gaussian Processes Regression
3.6. Physical Modelling: PROSAIL
3.7. Model Assessment and Validation
4. Results
4.1. Field Reflectance Measurements
4.2. VI Modelling Results
4.2.1. Multi-Band Vegetation Index Models
4.2.2. Predefined Narrowband VI models
4.3. Non-Parametric Gaussian Process Regression Models
4.4. Physical Modelling: PROSAIL Simulations and Inversion
4.4.1. Spectral Curve Fitting Validation
4.4.2. Vegetation Modelling: PROSAIL LM Inversion
4.4.3. Vegetation Modelling: PROSAIL LUT Inversion
4.4.4. Comparison of VI Retrievals Using Simulated Multi-Angle Spectra
5. Discussion
5.1. Comparison of Field Measurements across a Bioclimatic Gradient
5.2. Multi-Angle Spectroscopic Analysis across a Bioclimatic Gradient
5.3. Empirical Modelling: Comparison of Parametric and Non-Parametric Retrieval Methods
5.4. Physical Modelling: Assessment of PROSAIL and Comparison of Inversion Techniques
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
ALA | Average leaf angle |
ANOVA | Analysis of variance |
ARTMO | Automated Radiative Transfer Models Operator |
ASD | Analytical Spectral Devices FieldSpec handheld spectroradiometer |
AVIRIS | Airborne Visible Infrared Imaging Spectrometer |
BGI | Blue green index |
BRF | Bidirectional reflectance factor |
Cab | Chlorophyll a+b (leaf chlorophyll content) |
Car | Carotenoids (leaf carotenoid content) |
Cbp | Leaf brown pigment content |
CCC | Canopy chlorophyll content |
CHRIS | Compact High Resolution Imaging Spectrometer |
Cm | Leaf dry matter content |
Cw | Equivalent water thickness |
DHP | Downward hemispherical photography |
DVI | Difference vegetation index |
EWT | Equivalent water thickness |
FOV | Field of view |
GFOV | Ground field of view |
GPR | Gaussian processes regression |
GPS | Global positioning system |
IPVI | Infrared Percentage Vegetation Index |
LAI | Leaf area index |
LAE | Least absolute error |
LCC | Leaf chlorophyll content |
LHS | Latin hypercube sampling |
LMA | Levenberg-Marquardt algorithm |
LSE | Least-squares estimator |
LUT | Look-up table |
M1 | CHRIS/PROBA Mode-1 |
MNLI | Modified Nonlinear Index |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSR | Modified Simple Ratio |
N | Leaf structure parameter |
NDVI | Normalized difference vegetation index |
NIR | Near-infrared |
nm | Nanometer |
NLI | Nonlinear Index |
NRMSE | Normalized root mean square error |
NRMSEcv | Cross-validated normalized root mean square error |
OSAVI | Optimized soil adjusted vegetation index |
PAI | Plant area index |
PLSR | partial least squares regression |
PROBA | Project for On Board Autonomy |
PROSAIL | Combination of PROSPECT-5 and SAILH radiative transfer models |
PROSPECT | A model of leaf optical properties spectra (leaf radiative transfer model) |
Ps | Soil reflectance parameter |
r2 | Coefficient of determination |
r2cv | Cross-validated coefficient of determination |
RAA | Relative azimuth angle |
RDVI | Renormalized Difference Vegetation Index |
RMCARI | Revised modified chlorophyll absorption ratio index |
RMSE | Root mean square error |
RMSEcv | Cross-validated root mean square error |
ROSAVI | Revised optimized soil adjusted vegetation index |
RTM | Radiative transfer model |
SAA | Sun azimuth angle |
SAIL | Scattering by Arbitrarily Inclined Leaves (canopy radiative transfer model) |
SAILH | SAIL model with a hotspot parameter |
SAVI | Soil adjusted vegetation index |
SKYL | Ratio of diffuse to total incident radiation |
SL | Hot spot parameter |
SPAD | Minolta SPAD-502 leaf chlorophyll meter |
SR | Simple ratio (vegetation index) |
SRNDVI | Simple Ratio × NDVI |
SWIR | Short-wavelength infrared (wavelength region) |
SZA | Solar zenith angle |
TDVI | Transformed Difference Vegetation Index |
TOC | Top of canopy |
TSAVI | Transformed soil adjusted vegetation index |
VAA | View azimuth angle |
VZA | View zenith angle |
VI | Vegetation index |
VIS | Visible (wavelength region) |
VZA | View zenith angle |
References
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.E.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P.J. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Schaepman, M.E.; Ustin, S.L.; Plaza, A.J.; Painter, T.H.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy: An assessment. Remote Sens. Environ. 2009, 113, S123–S137. [Google Scholar] [CrossRef]
- Borzuchowski, J.; Schulz, K. Retrieval of leaf area index (LAI) and soil water content (WC) using hyperspectral remote sensing under controlled glass house conditions for spring barley and sugar beet. Remote Sens. 2010, 2, 1702–1721. [Google Scholar] [CrossRef] [Green Version]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multi-angular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Sykioti, O.; Paronis, D.; Stagakis, S.; Kyparissis, A. Band depth analysis of CHRIS/PROBA data for the study of a Mediterranean natural ecosystem. Correlations with leaf optical properties and ecophysiological parameters. Remote Sens. Environ. 2011, 115, 752–766. [Google Scholar] [CrossRef]
- Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in Arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Vegetation greening in the Canadian Arctic related to decadal warming. J. Environ. Monit. 2009, 11, 2231–2238. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Gamon, J.A.; Huemmrich, K.F.; Stone, R.S.; Tweedie, C.E. Spatial and temporal variation in primary productivity (NDVI) of coastal Alaskan tundra: Decreased vegetation growth following earlier snowmelt. Remote Sens. Environ. 2013, 129, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.A.; Raynolds, M.K.; Daniëls, F.J.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; et al. The Circumpolar Arctic Vegetation Map (CAVM). J. Veg. Sci. 2005, 16, 267–282. [Google Scholar] [CrossRef]
- Raynolds, M.K.; Walker, D.A.; Balser, A.; Bay, C.; Campbell, M.; Cherosov, M.M.; Daniëls, F.J.A.; Eidesen, P.B.; Ermokhina, K.A.; Frost, G.V.; et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 2019, 232, 111297. [Google Scholar] [CrossRef]
- Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen, S.R. Spectral and radiometric calibration of the Next Generation Airborne Visible Infrared Spectrometer (AVIRIS-NG). Remote Sens. 2019, 11, 2129. [Google Scholar] [CrossRef] [Green Version]
- Galeazzi, C.; Sacchetti, A.; Cisbani, A.; Babini, G. The PRISMA Program. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; pp. IV—105–IV—108. [Google Scholar]
- Kaufmann, H.; Segl, K.; Chabrillat, S.; Hofer, S.; Stuffier, T.; Mueller, A.; Richter, R.; Schreier, G.; Haydn, R.; Bach, H. EnMAP—A hyperspectral sensor for environmental mapping and analysis. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 1617–1619. [Google Scholar]
- Blackburn, G.A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 1998, 66, 273–285. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimated for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens. Environ. 2008, 112, 2592–2604. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Barnsley, M.J.; Settle, J.J.; Cutter, M.A.; Lobb, D.R.; Teston, F. The PROBA/CHRIS mission: A low-cost small sat for hyperspectral multiangle observations of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1512–1520. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth. Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Grossman, Y.L.; Ustin, S.L.; Jacquemoud, S.; Sanderson, E.W.; Schmuck, G.; Verdebout, J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ. 1996, 56, 182–193. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; van den Brande, M. Using Sentinel-2 Data for retrieving LAI and Leaf and Canopy Chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2014, 17, 119–130. [Google Scholar] [CrossRef]
- Liu, N.; Budkewitsch, P.; Treitz, P. Examining spectral reflectance features related to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of Arctic tundra. Remote Sens. Environ. 2017, 192, 58–72. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.; Veroustraete, F.; Clevers, J.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties: A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Buchhorn, M.; Walker, D.A.; Heim, B.; Raynolds, M.K.; Epstein, H.E.; Schwieder, M. Ground-Based hyperspectral characterization of Alaska tundra vegetation along environmental gradients. Remote Sens. 2013, 5, 3971–4005. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Rivera, J.; Veroustraete, F.; Munoz-Mari, J.; Clevers, J.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods: A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 1985, 17, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Feret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Combal, B.; Baret, F.; Weiss, M. Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 2002, 22, 205–215. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems. In Advances in Land Remote Sensing: System, Modeling, Inversion and Application; Liang, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 171–200. [Google Scholar]
- Bratsch, S.N.; Epstein, H.E.; Buchhorn, M.; Walker, D.A. Differentiating among four Arctic tundra plant communities at Ivotuk, Alaska using field spectroscopy. Remote Sens. 2016, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.; Santos, M.; Sloan, V.; Watts, J.; Phoenix, G.; Oechel, W.; Zona, D. Mapping Arctic Tundra vegetation communities using field spectroscopy and multispectral satellite data in North Alaska, USA. Remote Sens. 2016, 8, 978. [Google Scholar] [CrossRef] [Green Version]
- Hope, A.S.; Kimball, J.S.; Stow, D.A. The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition. Int. J. Remote Sens. 1993, 14, 1861–1874. [Google Scholar] [CrossRef]
- Huemmrich, K.F.; Gamon, J.A.; Tweedie, C.E.; Campbell, P.K.; Landis, D.R.; Middleton, E.M. Arctic tundra vegetation functional types based on photosynthetic physiology and optical properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Kushida, K.; Kim, Y.; Tsuyuzaki, S.; Fukuda, M. Spectral vegetation indices for estimating shrub cover, green phytomass and leaf turnover in a sedge-shrub tundra. Int. J. Remote Sens. 2009, 30, 1651–1658. [Google Scholar] [CrossRef]
- Kushida, K.; Hobara, S.; Tsuyuzaki, S.; Kim, Y.; Watanabe, M.; Setiawan, Y.; Harada, K.; Shaver, G.R.; Fukuda, M. Spectral indices for remote sensing of phytomass, deciduous shrubs, and productivity in Alaskan Arctic tundra. Int. J. Remote Sens. 2015, 36, 4344–4362. [Google Scholar] [CrossRef]
- Laidler, G.J.; Treitz, P.M.; Atkinson, D.M. Remote sensing of Arctic vegetation: Relations between the NDVI, Spatial Resolution and Vegetation Cover on Boothia Peninsula, Nunavut. Arctic 2008, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Riedel, S.M.; Epstein, H.E.; Walker, D.A. Biotic controls over spectral reflectance of Arctic tundra vegetation. Int. J. Remote Sens. 2005, 26, 2391–2405. [Google Scholar] [CrossRef]
- Riedel, S.M.; Epstein, H.E.; Walker, D.A.; Richardson, D.L.; Calef, M.P.; Edwards, E.; Moody, A. Spatial and temporal heterogeneity of vegetation properties among four tundra plant communities at Ivotuk, Alaska, USA. Arct. Antarct. Alp. Res. 2005, 37, 25–33. [Google Scholar] [CrossRef]
- Ulrich, M.; Grosse, G.; Chabrillat, S.; Schirrmeister, L. Spectral characterization of periglacial surfaces and geomorphological units in the Arctic Lena Delta using field spectrometry and remote sensing. Remote Sens. Environ. 2009, 113, 1220–1235. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Verrelst, J.; Alonso, L.; Rivera Caicedo, J.P.; Moreno, J.; Camps-Valls, G. Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 867–874. [Google Scholar] [CrossRef]
- Wang, Z.; Townsend, P.A.; Schweiger, A.K.; Couture, J.J.; Singh, A.; Hobbie, S.E.; Cavender-Bares, J. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 2019, 221, 405–416. [Google Scholar] [CrossRef]
- Juszak, I.; Iturrate-Garcia, M.; Gastellu-Etchegorry, J.P.; Schaepman, M.E.; Maximov, T.C.; Schaepman-Strub, G. Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens. Environ. 2017, 193, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.P.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens. 2013, 5, 3280–3304. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Hilker, T.; Galvão, L.S.; Aragão, L.; de Moura, Y.M.; do Amaral, C.H.; Lyapustin, A.I.; Wu, J.; Albert, L.P.; Ferreira, M.J.; Anderson, L.O.; et al. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. Int. J. Appl. Earth. Obs. Geoinf. 2017, 58, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Casas, A.; Riaño, D.; Ustin, S.L.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
- Hilker, T.; Gitelson, A.; Coops, N.C.; Hall, F.G.; Black, T.A. Tracking plant physiological properties from multi-angular tower-based remote sensing. Oecologia 2011, 165, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Schaepman, M.E. Spectrodirectional remote sensing: From pixels to processes. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Chopping, M.; Moisen, G.G.; Su, L.; Laliberte, A.; Rango, A.; Martonchik, J.V.; Peters, D.P.C. Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sens. Environ. 2008, 112, 2051–2063. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Asner, G.P.; Davies, R.; Knyazikhin, Y.; Muller, J.; Nolin, A.W.; Pinty, B.; Schaaf, C.B.; Stroeve, J. New directions in earth observing: Scientific applications of multi-angle remote sensing. Bull. Am. Meteorol. Soc. 1999, 80, 2209–2228. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Braswell, B.H.; Davies, R.; Gobron, N.; Hu, J.; Jin, Y.; Kahn, R.A.; Knyazikhin, Y.; Loeb, N.; Muller, J.P.; et al. The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ. 2005, 97, 495–518. [Google Scholar] [CrossRef]
- Verrelst, J.; Schaepman, M.E.; Koetz, B.; Kneubühler, M. Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens. Environ. 2008, 112, 2341–2353. [Google Scholar] [CrossRef]
- Vierling, L.A.; Deering, D.W.; Eck, T.F. Differences in Arctic tundra vegetation type and phenology as seen using bidirectional radiometry in the early growing season. Remote Sens. Environ. 1997, 60, 71–82. [Google Scholar] [CrossRef]
- Buchhorn, M.; Raynolds, M.K.; Walker, D.A. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 2016, 11, 125002. [Google Scholar] [CrossRef]
- Kennedy, B.E.; King, D.J.; Duffe, J. Retrieval of Arctic Vegetation biophysical and biochemical properties from CHRIS/PROBA Multi-Angle Imaging Spectroscopy using empirical and PROSAIL physical modelling. Manuscript in preparation.
- Ecological Stratification Working Group (ESWG). A National Ecological Framework for Canada; Report and National Map at 1:7500 000 Scale; Agriculture and Agri-Food Canada; Research Branch; Centre for Land and Biological Resources Research and Environment Canada; State of the Environment Directorate; Ecozone Analysis Branch: Ottawa, ON, Canada, 1995. [Google Scholar]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Comiso, J.C.; Epstein, H.E.; Jia, G.; Gens, R.; Pinzon, J.E.; Tucker, C.J.; Tweedie, C.E.; et al. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interact. 2010, 14, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Lantz, T.C.; Olthof, I.; Kokelj, S.V.; Sims, R.A. Warming-Induced Shrub Expansion and Lichen Decline in the Western Canadian Arctic. Ecosystems 2014, 17, 1151–1168. [Google Scholar] [CrossRef]
- Fraser, R.H.; Olthof, I.; Kokelj, S.V.; Lantz, T.C.; Lacelle, D.; Brooker, A.; Wolfe, S.; Schwarz, S. Detecting landscape changes in high latitude environments using Landsat trend analysis: 1. Visualization. Remote Sens. 2014, 6, 11533–11557. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, I.H.; Hik, D.S.; Kennedy, C.; Cooley, D.; Johnstone, J.F.; Kenney, A.J.; Krebs, C.J. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 2011, 40, 610–623. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H. Detecting landscape changes in high latitude environments using Landsat trend analysis: 2. classification. Remote Sens. 2014, 6, 11558–11578. [Google Scholar] [CrossRef] [Green Version]
- Pouliot, D.; Latifovic, R.; Olthof, I. Trends in vegetation NDVI from1 km AVHRR data over Canada for the period 1985–2006. Int. J. Remote Sens. 2009, 30, 149–168. [Google Scholar] [CrossRef]
- Sturm, M.; Racine, C.; Tape, K. Increasing shrub abundance in the Arctic. Nature 2001, 411, 546–547. [Google Scholar] [CrossRef]
- Walker, D.A.; Daniëls, F.J.A.; Alsos, I.; Bhatt, U.S.; Breen, A.L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L.A.; Edwards, M.E.; Ehrich, D.; et al. Circumpolar Arctic vegetation: A hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data. Environ. Res. Lett. 2016, 11, 55005. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, A.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Burn, C.R.; Kokelj, S.V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 2009, 20, 83–105. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; et al. Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Serreze, M.C.; Walsh, J.E.; Chapin, F.S.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W.C.J.; Morison, W.C.; Zhang, T.; Barry, R.G. Observational evidence of recent change in the Northern high-latitude environment. Clim. Chang. 2000, 46, 159–207. [Google Scholar] [CrossRef]
- Natural Resources Canada. Atlas of Canada National Scale Data 1:1,000,000. Ottawa, Ontario, Canada: Natural Resources Canada. 2014. Available online: http://open.canada.ca/data/en/dataset/e9931fc7-034c-52ad-91c5-6c64d4ba0065 (accessed on 1 October 2016).
- Natural Resources Canada. Atlas of Canada, Northern Geodatabase. Ottawa, Ontario, Canada: Natural Resources Canada. 2012. Available online: http://open.canada.ca/data/en/dataset/7e388083-6b66-5e0e-a264-a3c0eb98a2f0 (accessed on 1 October 2016).
- CAFF (Conservation of Arctic Flora and Fauna). Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity; Conservation of Arctic Flora and Fauna: Akureyri, Iceland; Narayana Press: Odder, Denmark, 2013. [Google Scholar]
- Daniëls, F.J.; Gillespie, L.J.; Poulin, M. Plants. In Arctic Biodiversity Assessment: Status and Trends in Arctic Biodiversity; Meltofte, H., Ed.; Conservation of Arctic Flora and Fauna: Akureyri, Iceland; Narayana Press: Odder, Denmark, 2013; pp. 310–353. [Google Scholar]
- Elvebakk, A. Tundra diversity and ecological characteristics of Svalbard. In Ecosystems of the World; Wielgolaski, F., Ed.; Elsevier: Oxford, UK, 1997; Volume 3, pp. 347–359. [Google Scholar]
- Walker, D.A.; Auerbach, N.A.; Bockheim, J.G.; Chapin, F.S., III; Eugster, W.; King, J.Y.; McFadden, J.P.; Michaelson, G.J.; Nelson, F.E.; Oechel, W.C.; et al. Energy and trace-gas fluxes across a soil pH boundary in the Arctic. Nature 1998, 394, 469–472. [Google Scholar] [CrossRef]
- Kennedy, B.E. Multi-Angle Spectroscopic Remote Sensing of Arctic Vegetation Biochemical and Biophysical Properties. Ph.D. Thesis, Carleton University, Ottawa, ON, Canada, 2017. [Google Scholar]
- Neumann, H.H.; Hartog, G.D.; Shaw, R.H. Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agric. For. Meteorol. 1989, 45, 325–345. [Google Scholar] [CrossRef]
- Mougin, E.; Demarez, V.; Diawara, M.; Hiernaux, P.; Soumaguel, N.; Berg, A. Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agric. For. Meteorol. 2014, 198, 155–167. [Google Scholar] [CrossRef]
- Campbell, R.J.; Nobley, K.N.; Marini, R.P.; Pfeiffer, D.G. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. HortScience 1990, 25, 330–331. [Google Scholar] [CrossRef] [Green Version]
- Cerovic, Z.; Masdoumier, G.; Ghozlen, N.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Darvishzadeh, R.; Matkan, A.; Dashti Ahangar, A. Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, L.M.; Tollenaar, M.; Houwing, L. A nondestructive method to monitor leaf greenness in corn. Can. J. Plant Sci. 1991, 71, 505–509. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef]
- Konica-Minolta. Chlorophyll Meter SPAD-502 Plus: Instruction Manual; Konica Minolta Sensing Americas Inc.: Ramsey, NJ, USA, 2009. [Google Scholar]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Non-Destructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Mobasheri, M.R.; Fatemi, S.B. Leaf Equivalent Water Thickness assessment using reflectance at optimum wavelengths. Theor. Exp. Plant Physiol. 2013, 25, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F.; Smith, G.J.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. CAN-EYE V6.4.6 User Manual; L’Institut National de Recherche Agronomique (INRA): Paris, France, 2016; Available online: https://www6.paca.inra.fr/can-eye/ (accessed on 1 August 2016).
- Welles, J.M.; Norman, J.M. Instrument for indirect measurement of canopy architecture. Agron. J. 1991, 83, 818–825. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Vina, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of Canopy Chlorophyll content in crops. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; He, B.; Quan, X.; Liao, Z. Chlorophyll content estimation in arid grasslands from Landsat-8 OLI data. Int. J. Remote Sens. 2016, 37, 615–632. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Zhang, X.; Zhang, B.; Tong, Q. Simulation of EO-1 Hyperion data from ALI multispectral data based on the spectral reconstruction approach. Sensors 2009, 9, 3090–3108. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and differentiation of data by simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Ruffin, C.; King, R.L. The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99, Hamburg, Germany, 28 June–2 July 1999; Volume 2, pp. 756–758. [Google Scholar]
- Kuusk, A. The hot-spot effect in plant canopy reflectance. In Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology; Myneni, R.B., Ross, J., Eds.; Springer: New York, NY, USA, 1991; pp. 139–159. [Google Scholar]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens. Environ. 2006, 100, 281–294. [Google Scholar] [CrossRef]
- Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Botha, E.J.; Leblon, B.; Zebarth, B.; Watmough, J. Non-Destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int. J. Appl. Earth. Obs. Geoinf. 2007, 9, 360–374. [Google Scholar] [CrossRef]
- Vohland, M.; Mader, S.; Dorigo, W. Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT+SAIL. Int. J. Appl. Earth. Obs. Geoinf. 2010, 12, 71–80. [Google Scholar] [CrossRef]
- Preidl, S.; Doktor, D. Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data. In Proceedings of the 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 6–9 June 2011; pp. 1–4. [Google Scholar]
- Gavin, H.P. The Levenberg-Marquardt Method for Nonlinear Least Squares Curve-Fitting Problems; Department of Civil and Environmental Engineering, Duke University: Durham, NC, USA, 2017; Available online: http://people.duke.edu/~hpgavin/ce281/lm.pdf (accessed on 14 June 2017).
- Markwardt, C.B. Non-Linear Least Squares Fitting in IDL with MPFIT. In Proceedings of the Astronomical Data Analysis Software and Systems XVIII; Bohlender, D., Dowler, P., Durand, D., Eds.; ASP Conference Series: Quebec, QC, Canada, 2009; pp. 251–254. [Google Scholar]
- Atzberger, C.; Jarmer, T.; Schlerf, M.; Kötz, B.; Werner, W. Retrieval of wheat bio-physical attributes from hyperspectral data and SAILH + PROSPECT radiative transfer model. In Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003; Habermeyer, M., Müller, A., Holzwarth, S., Eds.; pp. 473–482. [Google Scholar]
- Atzberger, C.; Jarmer, T.; Schlerf, M.; Kötz, B.; Werner, W. Spectroradiometric determination of wheat bio-physical variables: Comparison of different empirical-statistical approaches. In Remote Sensing in Transitions, Proceedings of the 23rd EARSeL Symposium on Remote Sensing in Transition, Ghent, Belgium, 2–5 June, 2003; Goossens, R., Ed.; Millpress Science Publishers: Rotterdam, The Netherlands, 2003; pp. 463–470. [Google Scholar]
- Cho, M.A. Hyperspectral Remote Sensing of Biochemical and Biophysical Parameters: The Derivative Red-Edge “Double-Peak Feature”: A Nuisance or An Opportunity? Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2007. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Houborg, R.; Soegaard, H.; Boegh, E. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 2007, 106, 39–58. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Bacour, C.; Poilve, H.; Frangi, J.P. Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sens. Environ. 2000, 74, 471–481. [Google Scholar] [CrossRef]
- Vohland, M.; Jarmer, T. Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT + SAIL). Int. J. Remote Sens. 2008, 29, 191–209. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.; Braswell, B.; Linder, E.; Baret, F.; Moore, B. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 2005, 99, 357–371. [Google Scholar] [CrossRef]
- Rivera, J.; Verrelst, J.; Alonso, L.; Moreno, J.; Camps-Valls, G. Toward a semi-automatic machine learning retrieval of biophysical parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar]
- Rivera, J.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Romijn, E.; Kooistra, L. Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sens. 2012, 4, 2866–2889. [Google Scholar] [CrossRef] [Green Version]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Snee, R. Validation of regression models: Methods and examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Deering, D.W.; Eck, T.F.; Banerjee, B. Characterization of the reflectance anisotropy of three boreal forest canopies in spring-summer. Remote Sens. Environ. 1999, 67, 205–229. [Google Scholar] [CrossRef]
- Sandmeier, S.; Muller, C.; Hosgood, B.; Andreoli, G. Physical Mechanisms in Hyperspectral BRDF Data of Grass and Watercress. Remote Sens. Environ. 1998, 66, 222–233. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Pushnik, J.; Dobrowski, S.; Ustin, S.L. Steady-State chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens. Environ. 2003, 84, 283–294. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). J. Plant Physiol. 1995, 145, 315–320. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y.; Simic, A. Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data. Remote Sens. Environ. 2013, 133, 128–140. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martin, P.; Cachorro, V.; Gonzáleze, M.; Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and Limits of Vegetation Indices for LAI and APAR Assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Tieszen, L.L.; Johnson, P.L. Pigment Structure of Some Arctic Tundra Communities. Ecology 1968, 49, 370–373. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric. For. Meteorol. 2016, 218–219, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Takebe, M.; Yoneyama, T.; Inada, K.; Murakami, T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil 1990, 122, 295–297. [Google Scholar] [CrossRef]
- Galvão, L.S.; Roberts, D.A.; Formaggio, A.R.; Numata, I.; Breunig, F.M. View angle effects on the discrimination of soybean varieties and on the relationships between vegetation indices and yield using off-nadir Hyperion data. Remote Sens. Environ. 2009, 113, 846–856. [Google Scholar] [CrossRef]
- Seed, E.D.; King, D.J. Shadow brightness and shadow fraction relations with effective leaf area index: Importance of canopy closure and view angle in mixed wood boreal forest. Can. J. Remote Sens. 2003, 29, 324–335. [Google Scholar] [CrossRef]
- Walter-Shea, E.A.; Privette, J.; Cornell, D.; Mesarch, M.A.; Hays, C.J. Relations between directional spectral vegetation indices and leaf area and absorbed radiation in alfalfa. Remote Sens. Environ. 1997, 61, 162–177. [Google Scholar] [CrossRef]
- Maeda, E.E.; Galvão, L.S. Sun-Sensor geometry effects on vegetation index anomalies in the Amazon rainforest. GISci. Remote Sens. 2015, 52, 332–343. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef]
- Baret, F.; Jacquemoud, S. Modeling canopy spectral properties to retrieve biophysical and biochemical characteristics. In Imaging Spectrometry: A Tool for Environmental Observations; Hill, J., Mégier, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 145–167. [Google Scholar]
- Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E.; Peterson, D.L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens. Environ. 1992, 39, 153–166. [Google Scholar] [CrossRef]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; Le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth. Obs. Geoinf. 2015, 43, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, W.; Bach, H. Coupled soil-leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Thomas, H.J.D.; Myers-Smith, I.H.; Bjorkman, A.D.; Elmendorf, S.C.; Blok, D.; Cornelissen, J.H.C.; Forbes, B.C.; Hollister, R.D.; Normand, S.; Prevéy, J.S.; et al. Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Glob. Ecol. Biogeogr. 2019, 28, 78–95. [Google Scholar] [CrossRef] [Green Version]
- Macander, M.; Frost, G.; Nelson, P.; Swingley, C. Regional Quantitative Cover Mapping of Tundra Plant Functional Types in Arctic Alaska. Remote Sens. 2017, 9, 1024. [Google Scholar] [CrossRef] [Green Version]
- Gastellu-Etchegorry, J.P.; Demarez, V.; Pinel, V.; Zagolski, F. Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens. Environ. 1996, 58, 131–156. [Google Scholar] [CrossRef] [Green Version]
- Gastellu-Etchegorry, J.P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef] [Green Version]
LCC (µg/cm2) | Subplot | ||||
Field Site | n | Mean | Min | Max | Std. Err. |
Herschel Island (2011) | 693 | 34.9 | 19.0 | 54.8 | 0.2 |
Banks Island (2012) | 520 | 32.0 | 12.6 | 49.5 | 0.3 |
Richards Island (2013) | 162 | 33.5 | 19.0 | 53.1 | 0.5 |
Richardson Mountains (2013) | 225 | 36.1 | 22.2 | 55.3 | 0.4 |
Richardson Mountains (2014 a) | 360 | 37.5 | 3.8 | 65.9 | 0.8 |
Richardson Mountains (2014 b) | 99 | 40.7 | 31.0 | 50.4 | 0.4 |
PAI (dimensionless) | Plot | ||||
Field Site | n | Mean | Min | Max | Std. Err. |
Herschel Island (2011) | 33 | 0.82 | 0.50 | 1.40 | 0.04 |
Banks Island (2012) | 31 | 0.44 | 0.00 | 0.98 | 0.05 |
Richards Island (2013) | 18 | 0.80 | 0.34 | 1.43 | 0.06 |
Richardson Mountains (2013) | 25 | 1.09 | 0.61 | 1.50 | 0.04 |
Richardson Mountains (2014) | 20 | 1.14 | 0.35 | 1.82 | 0.09 |
Richardson Mountains (2014 b) | 20 | 1.18 | 0.35 | 1.74 | 0.09 |
CCC (g/m2) | Subplot | ||||
Field Site | n | Mean | Min | Max | Std. Err. |
Herschel Island (2011) | 693 | 0.29 | 0.06 | 0.89 | 0.01 |
Banks Island (2012) | 520 | 0.18 | 0.01 | 0.65 | 0.00 |
Richards Island (2013) | 162 | 0.27 | 0.05 | 0.90 | 0.01 |
Richardson Mountains (2013) | 225 | 0.40 | 0.15 | 0.83 | 0.01 |
Richardson Mountains (2014) | 99 | 0.47 | 0.11 | 0.80 | 0.02 |
Richardson Mountains (2014 b) | 99 | 0.48 | 0.04 | 0.99 | 0.02 |
Model | Symbol | Definition | Units | Lower | Upper | LM Start | LUT Step |
---|---|---|---|---|---|---|---|
PROSPECT-5 | N ’ | Leaf structure parameter (mesophyll) | Unitless | 1.0 | 2.5 | 1.5 | 0.5 |
Cab | Chlorophyll a+b content (LCC) | μg/cm2 | 0.001 | 55.0 | 30.0 | 2.0 | |
Car | Carotenoid content | μg/cm2 | 0.001 | 25.0 | 12.0 | 5.0 | |
Cbp ’ | Brown pigment content | Unitless | 0.001 | 1.0 | 0.5 | 0.5 | |
Cw | Equivalent water thickness | g/cm2 | 0.001 | 0.08 | 0.003 | 0.04 | |
Cm | Dry matter content (leaf mass per area) | g/cm2 | 0.001 | 0.05 | 0.03 | 0.025 | |
SAILH | LAI | Leaf area index/plant area index (PAI) | m2/m2 | 0.001 | 2.5 | 1.0 | 0.25 |
ALA | Average leaf angle | Degrees | 0.0 | 80.0 | 45.0 | 40 | |
SL ’ | Hot spot parameter | m/m1 | 0.05 | 0.1 | 0.075 | 0.05 | |
Ps ’ | Soil reflectance assumed Lambertian or not | Unitless | 0.001 | 1.0 | 0.5 | 0.5 | |
SKYL ’ | Ratio of diffuse to total incident radiation | Unitless | 0.001 | 100.0 | 0.1 | 50 | |
SZA * | Solar zenith angle | Degrees | 46.0 | 66.0 | − | 10 | |
VZA * | Viewing zenith angle | Degrees | −55.0 | 55.0 | − | − | |
RAA * | Relative azimuth angle (between sun/sensor) | Degrees | 0.01 | 180.0 | − | − |
ASD (Full Spectrum) | Simulated CHRIS M1 | |||||
---|---|---|---|---|---|---|
Subplot | Plot | Subplot | Plot | |||
VI | Rank | Mean r2cv | r2cv | r2cv | r2cv | r2cv |
SR | 1 | 0.51 | 0.48 | 0.58 | 0.45 | 0.53 |
NDVI | 2 | 0.50 | 0.47 | 0.57 | 0.44 | 0.53 |
IPVI | 3 | 0.50 | 0.46 | 0.57 | 0.44 | 0.53 |
ASD (Full Spectrum) | Simulated CHRIS M1 | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2cv | RMSEcv | NRMSEcv | r2cv | RMSEcv | NRMSEcv |
LCC | All | 0.54 | 3.29 | 0.11 | 0.47 | 3.45 | 0.11 |
PAI | All | 0.64 | 0.17 | 0.15 | 0.58 | 0.19 | 0.17 |
CCC | All | 0.56 | 0.08 | 0.11 | 0.53 | 0.08 | 0.12 |
LCC | +55° | 0.57 | 3.24 | 0.11 | 0.46 | 3.43 | 0.11 |
LCC | +36° | 0.56 | 3.31 | 0.11 | 0.44 | 3.39 | 0.11 |
LCC | 0° | 0.56 | 3.17 | 0.10 | 0.53 | 3.24 | 0.10 |
LCC | −36° | 0.43 | 3.44 | 0.11 | 0.43 | 3.72 | 0.12 |
LCC | −55° | 0.57 | 3.33 | 0.11 | 0.47 | 3.51 | 0.11 |
PAI | +55° | 0.63 | 0.17 | 0.15 | 0.60 | 0.18 | 0.16 |
PAI | +36° | 0.57 | 0.18 | 0.16 | 0.49 | 0.19 | 0.17 |
PAI | 0° | 0.69 | 0.16 | 0.14 | 0.60 | 0.18 | 0.17 |
PAI | −36° | 0.69 | 0.18 | 0.15 | 0.63 | 0.19 | 0.16 |
PAI | −55° | 0.62 | 0.17 | 0.15 | 0.58 | 0.19 | 0.17 |
CCC | +55° | 0.60 | 0.08 | 0.11 | 0.51 | 0.08 | 0.12 |
CCC | +36° | 0.59 | 0.08 | 0.11 | 0.50 | 0.09 | 0.12 |
CCC | 0° | 0.50 | 0.08 | 0.10 | 0.56 | 0.08 | 0.11 |
CCC | −36° | 0.56 | 0.08 | 0.12 | 0.49 | 0.09 | 0.13 |
CCC | −55° | 0.56 | 0.08 | 0.12 | 0.58 | 0.09 | 0.12 |
All | +55° | 0.60 | − | 0.12 | 0.52 | − | 0.13 |
All | +36° | 0.57 | − | 0.13 | 0.47 | − | 0.13 |
All | 0° | 0.58 | − | 0.12 | 0.57 | − | 0.12 |
All | −36° | 0.56 | − | 0.13 | 0.52 | − | 0.14 |
All | −55° | 0.58 | − | 0.13 | 0.54 | − | 0.14 |
ASD (Full Spectrum) | Simulated CHRIS M1 | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2cv | RMSEcv | NRMSEcv | r2cv | RMSEcv | NRMSEcv |
LCC | All | 0.52 | 4.33 | 0.14 | 0.52 | 4.33 | 0.14 |
PAI | All | 0.54 | 0.23 | 0.20 | 0.53 | 0.23 | 0.20 |
CCC | All | 0.55 | 0.10 | 0.14 | 0.55 | 0.10 | 0.14 |
LCC | +55° | 0.50 | 4.47 | 0.14 | 0.50 | 4.46 | 0.14 |
LCC | +36° | 0.44 | 4.38 | 0.14 | 0.44 | 4.39 | 0.14 |
LCC | 0° | 0.57 | 3.97 | 0.12 | 0.58 | 3.98 | 0.12 |
LCC | −36° | 0.51 | 4.51 | 0.14 | 0.52 | 4.52 | 0.14 |
LCC | −55° | 0.57 | 4.39 | 0.14 | 0.57 | 4.38 | 0.14 |
PAI | +55° | 0.53 | 0.21 | 0.19 | 0.53 | 0.21 | 0.19 |
PAI | +36° | 0.56 | 0.23 | 0.20 | 0.56 | 0.23 | 0.20 |
PAI | 0° | 0.50 | 0.24 | 0.21 | 0.49 | 0.24 | 0.22 |
PAI | −36° | 0.58 | 0.26 | 0.22 | 0.55 | 0.26 | 0.21 |
PAI | −55° | 0.55 | 0.22 | 0.19 | 0.53 | 0.22 | 0.19 |
CCC | +55° | 0.55 | 0.10 | 0.13 | 0.55 | 0.10 | 0.13 |
CCC | +36° | 0.56 | 0.10 | 0.14 | 0.57 | 0.10 | 0.14 |
CCC | 0° | 0.51 | 0.10 | 0.13 | 0.50 | 0.10 | 0.13 |
CCC | −36° | 0.56 | 0.12 | 0.16 | 0.57 | 0.12 | 0.16 |
CCC | −55° | 0.58 | 0.09 | 0.13 | 0.58 | 0.10 | 0.13 |
All | +55° | 0.52 | − | 0.15 | 0.53 | − | 0.15 |
All | +36° | 0.52 | − | 0.16 | 0.52 | − | 0.16 |
All | 0° | 0.53 | − | 0.16 | 0.53 | − | 0.16 |
All | −36° | 0.55 | − | 0.18 | 0.55 | − | 0.17 |
All | −55° | 0.57 | − | 0.15 | 0.56 | − | 0.16 |
ASD (Full Spectrum) | Simulated CHRIS M1 | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2cv | RMSEcv | NRMSEcv | r2cv | RMSEcv | NRMSEcv |
LCC | All | 0.58 | 4.38 | 0.14 | 0.60 | 3.99 | 0.13 |
PAI | All | 0.51 | 0.25 | 0.22 | 0.63 | 0.23 | 0.20 |
CCC | All | 0.59 | 0.11 | 0.15 | 0.65 | 0.10 | 0.14 |
LCC | +55° | 0.61 | 4.40 | 0.14 | 0.58 | 4.17 | 0.13 |
LCC | +36° | 0.55 | 4.81 | 0.15 | 0.56 | 4.39 | 0.14 |
LCC | 0° | 0.53 | 3.95 | 0.12 | 0.66 | 3.61 | 0.11 |
LCC | −36° | 0.61 | 4.04 | 0.13 | 0.57 | 3.79 | 0.12 |
LCC | −55° | 0.59 | 4.81 | 0.15 | 0.62 | 4.12 | 0.13 |
PAI | +55° | 0.44 | 0.25 | 0.22 | 0.54 | 0.22 | 0.19 |
PAI | +36° | 0.48 | 0.25 | 0.21 | 0.65 | 0.22 | 0.19 |
PAI | 0° | 0.52 | 0.24 | 0.22 | 0.58 | 0.23 | 0.21 |
PAI | −36° | 0.51 | 0.26 | 0.23 | 0.64 | 0.23 | 0.20 |
PAI | −55° | 0.60 | 0.24 | 0.21 | 0.73 | 0.24 | 0.21 |
CCC | +55° | 0.60 | 0.11 | 0.16 | 0.61 | 0.11 | 0.15 |
CCC | +36° | 0.57 | 0.11 | 0.15 | 0.67 | 0.10 | 0.14 |
CCC | 0° | 0.54 | 0.10 | 0.14 | 0.59 | 0.10 | 0.13 |
CCC | −36° | 0.61 | 0.11 | 0.15 | 0.69 | 0.10 | 0.14 |
CCC | −55° | 0.62 | 0.11 | 0.16 | 0.70 | 0.11 | 0.16 |
All | +55° | 0.55 | − | 0.17 | 0.58 | − | 0.16 |
All | +36° | 0.53 | − | 0.17 | 0.62 | − | 0.16 |
All | 0° | 0.53 | − | 0.16 | 0.61 | − | 0.15 |
All | −36° | 0.58 | − | 0.17 | 0.63 | − | 0.15 |
All | −55° | 0.60 | − | 0.17 | 0.68 | − | 0.17 |
ASD (Full Spectrum) | Simulated CHRIS M1 | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2 | RMSE | NRMSE | r2 | RMSE | NRMSE |
LCC | All | 0.35 | 8.31 | 0.28 | 0.28 | 7.74 | 0.27 |
PAI | All | 0.28 | 0.44 | 0.42 | 0.27 | 0.41 | 0.38 |
CCC | All | 0.36 | 0.18 | 0.25 | 0.29 | 0.16 | 0.23 |
LCC | +55° | 0.33 | 8.88 | 0.29 | 0.20 | 8.44 | 0.28 |
LCC | +36° | 0.25 | 9.18 | 0.31 | 0.24 | 8.14 | 0.29 |
LCC | 0° | 0.46 | 7.23 | 0.25 | 0.34 | 6.97 | 0.23 |
LCC | −36° | 0.32 | 9.44 | 0.32 | 0.32 | 7.96 | 0.27 |
LCC | −55° | 0.35 | 7.10 | 0.26 | 0.31 | 7.39 | 0.28 |
PAI | +55° | 0.35 | 0.40 | 0.37 | 0.30 | 0.38 | 0.36 |
PAI | +36° | 0.22 | 0.48 | 0.46 | 0.25 | 0.44 | 0.41 |
PAI | 0° | 0.36 | 0.43 | 0.41 | 0.26 | 0.41 | 0.40 |
PAI | −36° | 0.20 | 0.49 | 0.45 | 0.29 | 0.40 | 0.37 |
PAI | −55° | 0.27 | 0.41 | 0.38 | 0.23 | 0.40 | 0.37 |
CCC | +55° | 0.48 | 0.18 | 0.25 | 0.22 | 0.17 | 0.24 |
CCC | +36° | 0.30 | 0.19 | 0.26 | 0.30 | 0.17 | 0.24 |
CCC | 0° | 0.49 | 0.15 | 0.21 | 0.34 | 0.16 | 0.21 |
CCC | −36° | 0.22 | 0.19 | 0.26 | 0.27 | 0.16 | 0.23 |
CCC | −55° | 0.28 | 0.18 | 0.26 | 0.31 | 0.16 | 0.23 |
All | +55° | 0.39 | − | 0.30 | 0.24 | − | 0.30 |
All | +36° | 0.26 | − | 0.34 | 0.26 | − | 0.31 |
All | 0° | 0.44 | − | 0.29 | 0.31 | − | 0.28 |
All | −36° | 0.25 | − | 0.35 | 0.29 | − | 0.29 |
All | −55° | 0.30 | − | 0.30 | 0.28 | − | 0.29 |
ASD (Full Spectrum) | Simulated CHRIS M1 | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2 | RMSE | NRMSE | r2 | RMSE | NRMSE |
LCC | All | 0.44 a | 6.67 | 0.15 | 0.46 a | 6.37 | 0.14 |
PAI | All | 0.55 b | 0.53 | 0.29 | 0.52 b | 0.47 | 0.26 |
CCC | All | 0.46 b | 0.18 | 0.23 | 0.43 b | 0.18 | 0.23 |
LCC | +55° | 0.45 a | 6.89 | 0.16 | 0.47 a | 6.34 | 0.14 |
LCC | +36° | 0.38 d | 8.37 | 0.19 | 0.39 a | 7.08 | 0.16 |
LCC | 0° | 0.55 d | 6.88 | 0.16 | 0.54 a | 5.90 | 0.13 |
LCC | −36° | 0.45 d | 7.93 | 0.18 | 0.44 d | 7.92 | 0.18 |
LCC | −55° | 0.49 a | 6.05 | 0.14 | 0.50 a | 6.02 | 0.14 |
PAI | +55° | 0.60 b | 0.31 | 0.17 | 0.53 b | 0.28 | 0.15 |
PAI | +36° | 0.56 b | 0.44 | 0.24 | 0.51 b | 0.38 | 0.21 |
PAI | 0° | 0.53 b | 0.45 | 0.25 | 0.48 b | 0.38 | 0.21 |
PAI | −36° | 0.54 b | 0.62 | 0.34 | 0.52 b | 0.56 | 0.31 |
PAI | −55° | 0.53 a | 0.75 | 0.41 | 0.53 e | 0.75 | 0.41 |
CCC | +55° | 0.53 b | 0.12 | 0.15 | 0.48 a | 0.14 | 0.18 |
CCC | +36° | 0.45 c | 0.14 | 0.18 | 0.41 b | 0.15 | 0.19 |
CCC | 0° | 0.49 b | 0.14 | 0.18 | 0.46 b | 0.13 | 0.17 |
CCC | −36° | 0.42 a | 0.18 | 0.23 | 0.40 e | 0.18 | 0.23 |
CCC | −55° | 0.45 a | 0.29 | 0.37 | 0.44 a | 0.28 | 0.36 |
All | +55° | 0.50 b | − | 0.17 | 0.48 a | − | 0.17 |
All | +36° | 0.46 c | − | 0.21 | 0.42 b | − | 0.19 |
All | 0° | 0.50 b | − | 0.20 | 0.48 b | − | 0.18 |
All | −36° | 0.44 a | − | 0.22 | 0.42 a | − | 0.22 |
All | −55° | 0.50 a | − | 0.31 | 0.50 a | − | 0.30 |
SR (Simulated CHRIS M1) | ROSAVI (Simulated CHRIS M1) | ||||||
---|---|---|---|---|---|---|---|
Variable | Angle | r2 | RMSE | NRMSE | r2 | RMSE | NRMSE |
LCC | All | 0.48 | 11.67 | 0.18 | 0.52 | 11.29 | 0.17 |
PAI | All | 0.72 | 0.39 | 0.13 | 0.61 | 0.46 | 0.15 |
CCC | All | 0.77 | 0.15 | 0.09 | 0.64 | 0.18 | 0.11 |
LCC | +55° | 0.57 | 10.71 | 0.16 | 0.59 | 10.45 | 0.16 |
LCC | +36° | 0.54 | 11.02 | 0.17 | 0.56 | 10.75 | 0.16 |
LCC | 0° | 0.52 | 11.28 | 0.17 | 0.55 | 10.93 | 0.17 |
LCC | −36° | 0.45 | 12.12 | 0.18 | 0.49 | 11.64 | 0.18 |
LCC | −55° | 0.34 | 13.19 | 0.20 | 0.39 | 12.70 | 0.19 |
PAI | +55° | 0.76 | 0.37 | 0.12 | 0.66 | 0.43 | 0.14 |
PAI | +36° | 0.74 | 0.38 | 0.13 | 0.66 | 0.43 | 0.14 |
PAI | 0° | 0.72 | 0.39 | 0.13 | 0.65 | 0.44 | 0.15 |
PAI | −36° | 0.71 | 0.40 | 0.13 | 0.62 | 0.46 | 0.15 |
PAI | −55° | 0.67 | 0.42 | 0.14 | 0.45 | 0.55 | 0.18 |
CCC | +55° | 0.82 | 0.13 | 0.08 | 0.68 | 0.18 | 0.11 |
CCC | +36° | 0.80 | 0.14 | 0.09 | 0.67 | 0.18 | 0.11 |
CCC | 0° | 0.78 | 0.14 | 0.09 | 0.67 | 0.18 | 0.11 |
CCC | −36° | 0.75 | 0.15 | 0.10 | 0.65 | 0.18 | 0.11 |
CCC | −55° | 0.69 | 0.17 | 0.11 | 0.55 | 0.21 | 0.55 |
All | +55° | 0.71 | − | 0.12 | 0.64 | − | 0.14 |
All | +36° | 0.69 | − | 0.13 | 0.63 | − | 0.14 |
All | 0° | 0.67 | − | 0.13 | 0.62 | − | 0.14 |
All | −36° | 0.63 | − | 0.14 | 0.59 | − | 0.15 |
All | −55° | 0.57 | − | 0.15 | 0.46 | − | 0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, B.E.; King, D.J.; Duffe, J. Comparison of Empirical and Physical Modelling for Estimation of Biochemical and Biophysical Vegetation Properties: Field Scale Analysis across an Arctic Bioclimatic Gradient. Remote Sens. 2020, 12, 3073. https://doi.org/10.3390/rs12183073
Kennedy BE, King DJ, Duffe J. Comparison of Empirical and Physical Modelling for Estimation of Biochemical and Biophysical Vegetation Properties: Field Scale Analysis across an Arctic Bioclimatic Gradient. Remote Sensing. 2020; 12(18):3073. https://doi.org/10.3390/rs12183073
Chicago/Turabian StyleKennedy, Blair E., Douglas J. King, and Jason Duffe. 2020. "Comparison of Empirical and Physical Modelling for Estimation of Biochemical and Biophysical Vegetation Properties: Field Scale Analysis across an Arctic Bioclimatic Gradient" Remote Sensing 12, no. 18: 3073. https://doi.org/10.3390/rs12183073
APA StyleKennedy, B. E., King, D. J., & Duffe, J. (2020). Comparison of Empirical and Physical Modelling for Estimation of Biochemical and Biophysical Vegetation Properties: Field Scale Analysis across an Arctic Bioclimatic Gradient. Remote Sensing, 12(18), 3073. https://doi.org/10.3390/rs12183073