Remote and Proximal Assessment of Plant Traits
A special issue of Remote Sensing (ISSN 2072-4292).
Deadline for manuscript submissions: closed (31 March 2021) | Viewed by 66007
Special Issue Editors
Interests: remote and proximal sensing of vegetation; hyperspectral; plant traits assessment and early stress detection; precision agriculture; phenotyping
Special Issues, Collections and Topics in MDPI journals
2. Mantle Labs GmbH, Vienna, Austria
Interests: agriculture; hybrid retrieval; hyperspectral remote sensing; machine learning methods; active learning
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Plants are optically sensed by a variety of sensors and at different scales to answer diverse research questions and to meet practical challenges. Research in quantitative remote sensing starts at the organ scale moving to the entire plant, population, field, or biotope, up to data obtained from entire continents to explore global phenomena. The use of digital information has been abundantly exploited for more efficient cultivation of large areas and has become part of agricultural practices worldwide for irrigation and fertilization based on management zones. In addition, breeders are using high-throughput phenotyping in selection experiments for biotic and abiotic stresses as well as yield quantity and quality. Ecologists are using remotely sensed information to assess carbon footprint. Analyzing high-quality remote sensing observations is also challenging in view of upcoming hyperspectral spaceborne missions and their associated large data streams. Therefore, the development and adaptation of fast, effective, accurate, and generic retrieval algorithms for biophysical and biochemical traits is required. Methods should be provided on appropriate platforms and evaluated by plant physiologists, agronomists, and ecologists.
This Special Issue strongly encourages contributions aimed at estimating the morpho-physiological and biochemical plant traits (e.g., plant height, LAI, biomass, nutrient contents, water status, pigment concentration, photosynthetic activity, disease resistance, yield prediction, pollutants detection) from Earth Observation data in agricultural and ecological contexts to support food security and sustainability. This Special Issue aims to cover a vast range of spatial resolutions (from continent to sub-leaf or root) and spectral resolutions (RGB, multi- and hyperspectral imagery, as well as point data). Besides diverse empirical and physically based retrieval approaches, “hybrid approaches” combining the generic properties of radiative transfer models with the flexibility and efficiency of nonlinear nonparametric methods (machine learning) are welcome. Moreover, time-series analysis related to plant traits assessment can be exploited. This Special Issue is expected to demonstrate recent progress and to discuss future perspectives in plant traits sensing.
Dr. Ittai Herrmann
Dr. Katja Berger
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- vegetation
- biophysical and biochemical traits
- high-throughput phenotyping
- agriculture
- radiative transfer models
- machine learning
- hyperspectral imagery
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.