Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach
Abstract
:1. Introduction
2. Study Area and Experimental Data
3. Improving Agricultural Drought Assessment in Heterogeneous Areas
3.1. Evaluation of Heterogeneity of the Landscape and Segregation of Agricultural Areas
3.2. Assessment of Agricultural Drought using the Vegetation Condition Index
3.3. Enhanced Estimation of Agricultural Drought and Comparison Analysis
3.4. Detection of Agricultural Drought Vulnerable Regions
4. Results and Discussion
4.1. Spatial Distribution of Land Cover Types and Detection of Agricultural Areas
4.2. Evaluating Drought Conditions Using the VCI and mVCI
4.3. Comparison Analysis
4.4. Assessing Drought Hazard and its Impact on the Yield of Major Cereals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sahoo, R.N.; Dutta, D.; Khanna, M.; Kumar, N.; Bandyopadhyay, S.K. Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices. Nat. Hazards 2015, 77, 733–751. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Palchaudhuri, M.; Biswas, S. Application of AHP with GIS in drought risk assessment for Puruliya district, India. Nat. Hazards 2016, 84, 1905–1920. [Google Scholar] [CrossRef]
- Rulinda, C.M.; Stein, A.; Turdukulov, U.D. Visualizing and quantifying the movement of vegetative drought using remote-sensing data and GIS. Int. J. Geogr. Inf. Sci. 2012, 27, 1481–1496. [Google Scholar] [CrossRef]
- Su, Z.; He, Y.; Dong, X.; Wang, L. Drought Monitoring and Assessment Using Remote Sensing; Lakshmi, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 151–172. [Google Scholar]
- Yu, J.; Lim, J.; Lee, K.-S. Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data. Environ. Monit. Assess. 2018, 190, 126. [Google Scholar] [CrossRef]
- Alamdarloo, E.H.; Manesh, M.B.; Khosravi, H. Probability assessment of vegetation vulnerability to drought based on remote sensing data. Environ. Monit. Assess. 2018, 190, 702. [Google Scholar] [CrossRef]
- Amri, R.; Zribi, M.; Lili-Chabaane, Z.; Duchemin, B.; Gruhier, C.; Chehbouni, A. Analysis of Vegetation Behavior in a North African Semi-Arid Region, Using SPOT-VEGETATION NDVI Data. Remote Sens. 2011, 3, 2568–2590. [Google Scholar] [CrossRef] [Green Version]
- Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS J. Photogramm. Remote. Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Buurman, J.; Bui, D.D.; Du, L.T.T. Drought risk assessment in Vietnamese communities using household survey information. Int. J. Water Resour. Dev. 2019, 36, 88–105. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Tan, Q.; Xin, J.; Li, Y.; Tang, Y. Drought risk evaluation model with interval number ranking and its application. Sci. Total Environ. 2019, 685, 1042. [Google Scholar] [CrossRef]
- Mortuza, M.; Moges, E.; Demissie, Y.; Li, H.-Y. Historical and future drought in Bangladesh using copula-based bivariate regional frequency analysis. Theor. Appl. Clim. 2018, 135, 855–871. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Earth Sci. 2006, 52, 1045–1052. [Google Scholar] [CrossRef]
- Kaushalya, R.; Kumar, V.P.; Shubhasmita, S. Assessing Agricultural Vulnerability in India using NDVI Data Products. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Rahman, R.; Lateh, H. Meteorological drought in Bangladesh: Assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environ. Earth Sci. 2016, 75, 1026. [Google Scholar] [CrossRef]
- Akter, K.S.; Rahman, M. Spatio-Temporal Quantification and Characterization of Drought Patterns in Bangladesh. J. Water Environ. Technol. 2012, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Dash, B.K.; Rafiuddin, M.; Khanam, F.; Islam, M.N. Characteristics of meteorological drought in Bangladesh. Nat. Hazards 2012, 64, 1461–1474. [Google Scholar] [CrossRef]
- Miah, G.; Abdullah, H.M.; Jeong, C. Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh. Environ. Monit. Assess. 2017, 189, 547. [Google Scholar] [CrossRef]
- Nam, W.-H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Rossi, G.; Vega, T.; Bonaccorso, B. Methods and Tools for Drought Analysis and Management; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Nat. Hazards 2016, 86, 757–777. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G. Monitoring the vegetation activity in China using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Li, J.; Hu, J.; Jie, Z.; Massimo, M. Assessing the sensitivity of two new indicators of vegetation response to water availability for drought monitoring. In Proceedings of the SPIE 2012 Asia-Pacific Remote Sensing, Kyoto, Japan, 21 November 2012. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J.A. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third 80 ERTS Symposium; NASA SP-351; NASA: Washington, DC, USA, 1973; pp. 309–317. [Google Scholar]
- Shofiyati, R.; Takeuchi, W.; Sofan, P.; Darmawan, S.; Awaluddin; Supriatna, W. Indonesian drought monitoring from space. A report of SAFE activity: Assessment of drought impact on rice production in Indonesia by satellite remote sensing and dissemination with web-GIS. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 12048–12057. [Google Scholar] [CrossRef] [Green Version]
- Muthumanickam, D.; Kannan, P.; Kumaraperumal, R.; Natarajan, S.; Sivasamy, R.; Poongodi, C. Drought assessment and monitoring through remote sensing and GIS in western tracts of Tamil Nadu, India. Int. J. Remote Sens. 2011, 32, 5157–5176. [Google Scholar] [CrossRef]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought impacts on vegetation activity in the Mediterranean region: An assessment using remote sensing data and multi-scale drought indicators. Glob. Planet Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Dutta, D.; Kundu, A.; Patel, N.R.; Saha, S.K.; Siddiqui, A.R. Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). Egypt. J. Remote Sens. Space Sci. 2015, 18, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Ye, L.; Zhai, Y.; Zhu, H.; Qian, Q. Hazard assessment of drought disaster using a grey projection incidence model for the heterogeneous panel data. Grey Syst. Theory Appl. 2018, 8, 509–526. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- BBS. Yearbook of Agricultural Statistics-2018; Division, S.A.I., Ed.; Bangladesh Bureau of Statistics (BBS): Dhaka, Bangladesh, 2019.
- BBS. 45 Years Agriculture Statistics of Major Crops (Aus, Amon, Boro, Jute, Potato& Wheat); Division, S.A.I., Ed.; Bangladesh Bureau of Statistics (BBS): Dhaka, Bangladesh, 2018; pp. 1–216.
- Kamruzzaman, M.; Hwang, S.; Cho, J.; Jang, M.-W.; Jeong, H. Evaluating the Spatiotemporal Characteristics of Agricultural Drought in Bangladesh Using Effective Drought Index. Water 2019, 11, 2437. [Google Scholar] [CrossRef] [Green Version]
- Cegis, C. Vulnerability to Climate Induced Drought Scenerio & Impacts; Saha, S.K., Ali, M.S., Shahid, S., Eds.; Ministry of Disaster Management and Relief: Dhaka, Bangladesh, 2013.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USA Government Printing Office: Washington, DC, USA, 1976.
- Cordeiro, C.L.D.O.; Rossetti, D.F. Mapping vegetation in a late Quaternary landform of the Amazonian wetlands using object-based image analysis and decision tree classification. Int. J. Remote Sens. 2015, 36, 3397–3422. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Faridatul, M.I.; Wu, B. Automatic Classification of Major Urban Land Covers Based on Novel Spectral Indices. ISPRS Int. J. Geo Inf. 2018, 7, 453. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Wang, P.; Li, X. Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. Int. J. Remote Sens. 2004, 25, 61–72. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Gamage, M.S.D.N.; Smakhtin, V.U. The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia; Research report 85; International Water Management Institute: Colombo, Sri Lanka, 2004. [Google Scholar]
- Daneshvar, M.R.M.; Bagherzadeh, A.; Khosravi, M. Assessment of drought hazard impact on wheat cultivation using standardized precipitation index in Iran. Arab. J. Geosci. 2012, 6, 4463–4473. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Stöckli, R.; Vidale, P.L. European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int. J. Remote Sens. 2004, 25, 3303–3330. [Google Scholar] [CrossRef]
mVCI Value | Cropland Condition | DHI Weight |
---|---|---|
0–25% | Extreme dry | 3 |
26–35% | Severe dry | 2 |
36–50% | Moderate dry | 1 |
>50% | Fair | 0 |
Statistics | 2006 | 2010 | 2014 | 2018 |
---|---|---|---|---|
Max | 0.64 | 0.64 | 0.65 | 0.66 |
Min | 0.44 | 0.42 | 0.46 | 0.48 |
Yr2006 Index Range | Cropping Seasons | Yearly | ||||||
---|---|---|---|---|---|---|---|---|
Aman | Boro | Aus | ||||||
VCI | mVCI | VCI | mVCI | VCI | mVCI | VCI | mVCI | |
0–30 | 32.1 | 25.0 | 43.0 | 31.5 | 12.0 | 6.8 | 16.2 | 10.8 |
30–50 | 32.2 | 24.7 | 30.9 | 22.9 | 28.5 | 21.6 | 47.6 | 37.9 |
50–70 | 21.9 | 17.8 | 16.5 | 15.8 | 37.7 | 28.0 | 27.9 | 17.9 |
70–100 | 13.7 | 32.5 | 9.6 | 29.8 | 21.9 | 43.7 | 8.2 | 33.4 |
Yr2018 | ||||||||
0–30 | 3.6 | 1.5 | 3.8 | 1.6 | 3.7 | 1.3 | 1.4 | 0.1 |
30–50 | 17.8 | 13.1 | 15.6 | 10.4 | 17.9 | 11.4 | 10.8 | 6.0 |
50–70 | 41.3 | 36.9 | 40.3 | 34.3 | 42.6 | 30.4 | 59.3 | 43.7 |
70–100 | 37.3 | 48.5 | 40.3 | 53.7 | 35.8 | 56.9 | 28.5 | 50.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faridatul, M.I.; Ahmed, B. Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach. Remote Sens. 2020, 12, 3363. https://doi.org/10.3390/rs12203363
Faridatul MI, Ahmed B. Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach. Remote Sensing. 2020; 12(20):3363. https://doi.org/10.3390/rs12203363
Chicago/Turabian StyleFaridatul, Mst Ilme, and Bayes Ahmed. 2020. "Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach" Remote Sensing 12, no. 20: 3363. https://doi.org/10.3390/rs12203363
APA StyleFaridatul, M. I., & Ahmed, B. (2020). Assessing Agricultural Vulnerability to Drought in a Heterogeneous Environment: A Remote Sensing-Based Approach. Remote Sensing, 12(20), 3363. https://doi.org/10.3390/rs12203363