Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe
Abstract
:1. Introduction
2. Physical Background of Active Microwave Remote Sensing
3. Data
3.1. Metop ASCAT Vegetation Optical Depth (VOD)
3.1.1. Sensor Characteristics
3.1.2. Algorithm Description and Processing Steps
3.2. Sentinel-1 Cross-Polarization-Ratio (CR)
3.2.1. Sensor Characteristics
3.2.2. Algorithm Description and Processing Steps
3.3. Auxiliary Data
4. Methods
4.1. Spatial Resampling and Orbit Normalization
4.2. Temporal Matching, Masking, and Smoothing
4.3. Spatial and Temporal Analysis
5. Results
5.1. Resampling Methods
5.2. Spatial Analysis of CR and ASCAT VOD
5.3. Temporal Analysis of CR and ASCAT VOD
5.4. Comparison of CR and VODCA
6. Discussion
6.1. Vegetation Structure Effects
6.2. Sub-Surface Scattering
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F. Impacts of 1.5 °C global warming on natural and human systems. In Global Warming of 1.5 °C. An IPCC Special Report; IPCC Secretariat: Geneva, Switzerland, 2018; pp. 175–311. [Google Scholar]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andela, N.; Liu, Y.Y.; van Dijk, A.; de Jeu, R.A.M.; McVicar, T.R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: Comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 2013, 10, 6657. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Dijk, A.I.; McCabe, M.F.; Evans, J.P.; Jeu, R.A. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 2013, 22, 692–705. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Vreugdenhil, M.; Dorigo, W.A.; Wagner, W.; Jeu, R.A.M.D.; Hahn, S.; Marle, M.J.E.V. Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3513–3531. [Google Scholar] [CrossRef]
- Moesinger, L.; Dorigo, W.; Jeu, R.d.; Schalie, R.v.d.; Scanlon, T.; Teubner, I.; Forkel, M. The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA. Earth Syst. Sci. Data Discuss. 2019, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.P. SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 2017, 9, 457. [Google Scholar] [CrossRef] [Green Version]
- Konings, A.G.; Piles, M.; Rötzer, K.; McColl, K.A.; Chan, S.K.; Entekhabi, D. Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sens. Environ. 2016, 172, 178–189. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Hahn, S.; Melzer, T.; Bauer-Marschallinger, B.; Reimer, C.; Dorigo, W.A.; Wagner, W. Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2240–2248. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.P.; Ciais, P.; Chave, J.; Brandt, M.; Fensholt, R.; Saatchi, S.S.; Bastos, A.; Al-Yaari, A.; Hufkens, K.; et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 2019, 5, 944–951. [Google Scholar] [CrossRef]
- Teubner, I.E.; Forkel, M.; Jung, M.; Liu, Y.Y.; Miralles, D.G.; Parinussa, R.; van der Schalie, R.; Vreugdenhil, M.; Schwalm, C.R.; Tramontana, G.; et al. Assessing the relationship between microwave vegetation optical depth and gross primary production. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 79–91. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Khabbazan, S.; Vermunt, P.; Steele-Dunne, S.; Ratering Arntz, L.; Marinetti, C.; van der Valk, D.; Iannini, L.; Molijn, R.; Westerdijk, K.; van der Sande, C. Crop Monitoring Using Sentinel-1 Data: A Case Study from The Netherlands. Remote Sens. 2019, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Wigneron, J.P.; Zribi, M.; Albergel, C.; Calvet, J.C.; Fayad, I. First Vegetation Optical Depth Mapping from Sentinel-1 C-band SAR Data over Crop Fields. Remote Sens. 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Rötzer, K.; Montzka, C.; Entekhabi, D.; Konings, A.G.; McColl, K.A.; Piles, M.; Vereecken, H. Relationship Between Vegetation Microwave Optical Depth and Cross-Polarized Backscatter From Multiyear Aquarius Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4493–4503. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Melzer, T. Vegetation Modelling in WARP 6.0; EUMETSAT: Vienna, Austria, 2013. [Google Scholar]
- Hahn, S.; Reimer, C.; Vreugdenhil, M.; Melzer, T.; Wagner, W. Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 1–12. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Sabel, D.; Wagner, W. Optimisation of global grids for high-resolution remote sensing data. Comput. Geosci. 2014, 72. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L. Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens. 2018, 99, 1–20. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.P.; Reichle, R.H.; Brucker, L.; Brangers, I.; Rosnay, P.D.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Monteith, A.R.; Ulander, L.M.H. Temporal Survey of P- and L-Band Polarimetric Backscatter in Boreal Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3564–3577. [Google Scholar] [CrossRef]
- Pfeil, I.; Vreugdenhil, M.; Hahn, S.; Wagner, W.; Strauss, P.; Blöschl, G. Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate. Remote Sens. 2018, 10, 1788. [Google Scholar] [CrossRef] [Green Version]
- Morrison, K.; Wagner, W. Explaining Anomalies in SAR and Scatterometer Soil Moisture Retrievals From Dry Soils With Subsurface Scattering. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
CCI Land Cover Class | Original Climate Change Initiative (CCI) Land Cover Class | No. Gridpoints |
---|---|---|
Cropland | Cropland, rainfed Herbaceous cover Tree or shrub cover Cropland, irrigated or post-flooding Mosaic cropland (>50%)\natural vegetation (tree, shrub, herbaceous cover) Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%)\mosaic cropland | 20,491 |
Tree cover BD | Tree cover, broadleaved, deciduous, closed to open (>15%) Tree cover, broadleaved, deciduous, closed (>40%) Tree cover, broadleaved, deciduous, open (15–40%) Tree cover, mixed leaf type (broadleaved and needleleaved) | 3811 |
Tree cover NE | Tree cover, needleleaved, evergreen, closed to open (>15%) Tree cover, needleleaved, evergreen, closed (>40%) Tree cover, needleleaved, evergreen, open (15–40%) | 6809 |
Shrubland | Mosaic tree and shrub (>50%)/herbaceous cover (<50%) Mosaic herbaceous cover (>50%)/tree and shrub (<50%) Shrubland Evergreen shrubland Deciduous shrubland | 1355 |
Grassland | Grassland | 2439 |
Sparse | Sparse vegetation (tree, shrub, herbaceous cover) (<15%) Sparse shrub (<15%) Sparce herbaceous cover (<15%) | 2090 |
Bare areas | Bare areas | 1287 |
Metric | Quantile | Arithmetic Mean | Median | Geometric Mean | Normalized |
---|---|---|---|---|---|
0.05 | 0.391 | 0.380 | 0.387 | 0.634 | |
0.25 | 0.602 | 0.600 | 0.601 | 0.746 | |
0.50 | 0.701 | 0.700 | 0.700 | 0.802 | |
0.75 | 0.773 | 0.772 | 0.772 | 0.844 | |
0.95 | 0.852 | 0.853 | 0.851 | 0.895 | |
0.05 | −0.296 | −0.372 | −0.232 | −0.193 | |
0.25 | 0.189 | 0.157 | 0.245 | 0.283 | |
Bias dB | 0.50 | 0.522 | 0.555 | 0.579 | 0.618 |
0.75 | 0.854 | 0.911 | 0.916 | 0.961 | |
0.95 | 1.536 | 1.636 | 1.647 | 1.726 | |
0.05 | 0.417 | 0.421 | 0.425 | 0.345 | |
0.25 | 0.574 | 0.588 | 0.595 | 0.515 | |
RMSE dB | 0.50 | 0.769 | 0.810 | 0.805 | 0.759 |
0.75 | 1.026 | 1.089 | 1.076 | 1.058 | |
0.95 | 1.649 | 1.758 | 1.748 | 1.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vreugdenhil, M.; Navacchi, C.; Bauer-Marschallinger, B.; Hahn, S.; Steele-Dunne, S.; Pfeil, I.; Dorigo, W.; Wagner, W. Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sens. 2020, 12, 3404. https://doi.org/10.3390/rs12203404
Vreugdenhil M, Navacchi C, Bauer-Marschallinger B, Hahn S, Steele-Dunne S, Pfeil I, Dorigo W, Wagner W. Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sensing. 2020; 12(20):3404. https://doi.org/10.3390/rs12203404
Chicago/Turabian StyleVreugdenhil, Mariette, Claudio Navacchi, Bernhard Bauer-Marschallinger, Sebastian Hahn, Susan Steele-Dunne, Isabella Pfeil, Wouter Dorigo, and Wolfgang Wagner. 2020. "Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe" Remote Sensing 12, no. 20: 3404. https://doi.org/10.3390/rs12203404
APA StyleVreugdenhil, M., Navacchi, C., Bauer-Marschallinger, B., Hahn, S., Steele-Dunne, S., Pfeil, I., Dorigo, W., & Wagner, W. (2020). Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe. Remote Sensing, 12(20), 3404. https://doi.org/10.3390/rs12203404