Unsupervised Change Detection Using Spectrum-Trend and Shape Similarity Measure
Abstract
:1. Introduction
- Integrating the neighborhood spatial with spectral information effectively in the form of spectrum-trend graph. The discrete spectral values are transformed into two-dimensional (2-D) shape, and change detection is based on the shape. This method can improve the robustness, and it achieves good performance when dealing with VHR images.
- A novel viewpoint is proposed in order to discriminate changed and unchanged pixels by comparing the shape similarity of local spectrum-trend. The shape distance is calculated as the basis to weigh whether the corresponding pixels have changed or not. If the two target shapes are highly similar, the shape distance will be as small as possible, and it can be considered that no change exists between the two pixels. Otherwise, there has been a change.
2. Materials and Methods
2.1. Spectrum-Trend Graph
2.2. Local-Scene Spectrum-Trend Shape Context Descriptor
- For a given shape, the shape contour is captured by edge detection operator (e.g., canny operator). The contour of given shape is sampled to obtain a set of discrete points p1, p2, …, pn. Figure 3a,b present the details.
- Calculating the shape context. Any point pi is taken as a reference point. M concentric circles are established at a logarithmic distance interval in the region, where pi is the center. This area is divided equally along the circumferential direction N in order to form a target shaped template, as shown in Figure 3c. The relative position of the vector from point pi to other points is simplified as the number of points in each sector on the template. The statistical distribution histogram hi(k) of these points, named the shape context of point pi, is calculated as:
2.3. The Generation of Binary Change Map
2.4. Accuracy Metrics
3. Data Sets
4. Results
4.1. Results of CVA
4.2. Results of the Proposed Method
5. Discussion
5.1. The Effect of Window Size n
5.2. The Effect of Shape Context Parameters
5.3. The Comparison with CVA
6. Conclusions
- Improved change detection accuracies were obtained by the proposed algorithm. The proposed method presented satisfying performance in accuracy and it kept a good balance between the false alarms and the missed detections.
- A novel viewpoint was proposed to discriminate changed and unchanged pixels by comparing the spectrum-trend shape similarity. The discrete and isolated spectral reflectance values were transformed into the 2-D shape. The detection of change pixels then became into the comparison of similarity between the shapes.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruzzone, L.; Bovolo, F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc. IEEE 2013, 101, 609–630. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J. Change detection techniques for remote sensing applications: A survey. Earth Sci. Inf. 2019, 12, 143–160. [Google Scholar] [CrossRef]
- Furukawa, F.; Morimoto, J.; Yoshimura, N.; Kaneko, M. Comparison of conventional change detection methodologies using high-resolution imagery to find forest damage caused by typhoons. Remote Sens. 2020, 12, 3242. [Google Scholar] [CrossRef]
- Paris, C.; Bruzzone, L.; Fernandez-Prieto, D. A novel approach to the unsupervised update of land-cover maps by classification of time series of multispectral images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4259–4277. [Google Scholar] [CrossRef]
- Oguz, H.; Zengin, M. Analyzing land use/land cover change using remote sensing data and landscape structure metrics: A case study of erzurum, turkey. Fresenius Environ. Bull. 2011, 20, 3258–3269. [Google Scholar]
- Jin, S.; Yang, L.; Zhu, Z.; Homer, C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sens. Environ. 2017, 195, 44–55. [Google Scholar] [CrossRef]
- Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement index for burned area mapping: Integration of multiple spectral indices using sentinel-2 satellite images. Remote Sens. 2020, 12. [Google Scholar] [CrossRef]
- Othman, A.A.; Al-Saady, Y.I.; Al-Khafaji, A.K.; Gloaguen, R. Environmental change detection in the central part of Iraq using remote sensing data and GIS. Arab. J. Geosci. 2014, 7, 1017–1028. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Guo, H.; Sun, Z.; Liang, L. New approaches to urban area change detection using multitemporal RADARSAT-2 polarimetric synthetic aperture radar (SAR) data. Can. J. Remote Sens. 2012, 38, 253–266. [Google Scholar] [CrossRef]
- Gao, L.P.; Shi, W.H.; Miao, Z.L.; Lv, Z.Y. Method based on edge constraint and fast marching for road centerline extraction from very high-resolution remote sensing images. Remote Sens. 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Volpi, M.; Tuia, D.; Bovolo, F.; Kanevski, M.; Bruzzone, L. Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 77–85. [Google Scholar] [CrossRef]
- Wu, K.; Du, Q.; Wang, Y.; Yang, Y. Supervised sub-pixel mapping for change detection from remotely sensed images with different resolutions. Remote Sens. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Ma, W.; Wu, Y.; Zhang, J.; Jiao, L. Self-Supervised Representation Learning for Remote Sensing Image Change Detection Based on Temporal Prediction. Remote Sens. 2020, 12, 1868. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Lu, X.Q.; Li, X.L. A coarse-to-fine semi-supervised change detection for multispectral images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3587–3599. [Google Scholar] [CrossRef]
- Latte, N.; Lejeune, P. PlanetScope radiometric normalization and sentinel-2 super-resolution (2.5 m): A straightforward spectral-spatial fusion of multi-satellite multi-sensor images using residual convolutional neural networks. Remote Sens. 2020, 12, 2366. [Google Scholar] [CrossRef]
- Markert, K.N.; Markert, A.M.; Mayer, T.; Nauman, C.; Haag, A.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Kunlamai, T.; Chishtie, F.; et al. Comparing sentinel-1 surface water mapping algorithms and radiometric terrain correction processing in southeast asia utilizing google earth engine. Remote Sens. 2020, 12, 2469. [Google Scholar] [CrossRef]
- Silveira, E.M.; Bueno, I.T.; Acerbi-Junior, F.W.; Mello, J.M.; Scolforo, J.R.S.; Wulder, M.A. Using spatial features to reduce the impact of seasonality for detecting tropical forest changes from landsat time series. Remote Sens. 2018, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- Teng, S.W.; Hossain, M.T.; Lu, G. Multimodal image registration technique based on improved local feature descriptors. J. Electron. Imaging 2015, 24. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, Y. Multi-feature object-based change detection using self-adaptive weight change vector analysis. Remote Sens. 2016, 8, 549. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Lin, H.; Lue, Y.; Luo, Y.; Ren, Y.; Comber, A. A modified change vector approach for quantifying land cover change. Remote Sens. 2018, 10, 1578. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Wei, A.; Shi, P.; Zhang, Q.; Zhao, Y. Detecting land-use/land-cover change in rural–urban fringe areas using extended change-vector analysis. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 572–585. [Google Scholar] [CrossRef]
- Rahman, S.; Mesev, V. Change vector analysis, tasseled cap, and NDVI-NDMI for measuring land use/cover changes caused by a sudden short-term severe drought: 2011 texas event. Remote Sens. 2019, 11, 2217. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Bruzzone, L.; Bovolo, F.; Zanetti, M.; Du, P. Sequential spectral change vector analysis for iteratively discovering and detecting multiple changes in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4363–4378. [Google Scholar] [CrossRef]
- Kim, N.C.; So, H.J. Directional statistical Gabor features for texture classification. Pattern Recognit. Lett. 2018, 112, 18–26. [Google Scholar] [CrossRef]
- Li, Z.X.; Shi, W.Z.; Zhang, H.; Hao, M. Change detection based on gabor wavelet features for very high resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 783–787. [Google Scholar] [CrossRef]
- Touati, R.; Mignotte, M.; Dahmane, M. Multimodal change detection in remote sensing images using an unsupervised pixel pairwise-based markov random field model. IEEE Trans. Image Process. 2020, 29, 757–767. [Google Scholar] [CrossRef]
- Yu, H.; Yang, W.; Hua, G.; Ru, H.; Huang, P.P. Change detection using high resolution remote sensing images based on active learning and markov random fields. Remote Sens. 2017, 9, 1233. [Google Scholar] [CrossRef] [Green Version]
- Lv, Z.Y.; Liu, T.F.; Shi, C.; Benediktsson, J.A.; Du, H.J. Novel land cover change detection method based on k-means clustering and adaptive majority voting using bitemporal remote sensing images. IEEE Access 2019, 7, 34425–34437. [Google Scholar] [CrossRef]
- Huang, L.; Peng, Q.Z.; Yu, X.Q. Change detection in multitemporal high spatial resolution remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means clustering. J. Spectrosc. 2020, 2020. [Google Scholar] [CrossRef]
- Huo, L.; Feng, X.; Huo, C.; Zhou, Z.; Pan, C. Change field: A new change measure for VHR images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1812–1816. [Google Scholar] [CrossRef]
- Wang, B.; Choi, S.; Byun, Y.; Lee, S.; Choi, J. Object-based change detection of very high resolution satellite imagery using the cross-sharpening of multitemporal data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1151–1155. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Blaschke, T.; Ma, X.; Tiede, D.; Cheng, L.; Chen, Z.; Chen, D. Object-based change detection in urban areas: The effects of segmentation strategy, scale, and feature space on unsupervised methods. Remote Sens. 2016, 8, 761. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.-F.; Wang, H.-B. Change detection from high-resolution remote sensing image based on MSE model. Spectrosc. Spectr. Anal. 2013, 33, 728–732. [Google Scholar] [CrossRef]
- Liu, H.; Yang, M.; Chen, J.; Hou, J.; Deng, M. Line-constrained shape feature for building change detection in VHR remote sensing imagery. ISPRS Int. J. Geo Inf. 2018, 7, 410. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Zhou, M.; Jin, J.; Shi, W. An advanced superpixel-based markov random field model for unsupervised change detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1401–1405. [Google Scholar] [CrossRef]
- Song, A.; Kim, Y.; Han, Y. Uncertainty analysis for object-based change detection in very high-resolution satellite images using deep learning network. Remote Sens. 2020, 12, 2345. [Google Scholar] [CrossRef]
- Ding, M.; Tian, Z.; Jin, Z.; Xu, M.; Cao, C. Registration using robust kernel principal component for object-based change detection. IEEE Geosci. Remote Sens. Lett. 2010, 7, 761–765. [Google Scholar] [CrossRef]
- Cui, X.T.; Guo, X.Y.; Wang, Y.D.; Wang, X.L.; Zhu, W.H.; Shi, J.H.; Lin, C.Y.; Gao, X. Application of remote sensing to water environmental processes under a changing climate. J. Hydrol. 2019, 574, 892–902. [Google Scholar] [CrossRef]
- Mutowo, G. Remote sensing lake level fluctuations in response to a changing climate. J. Water Clim. Chang. 2020, 11, 30–38. [Google Scholar] [CrossRef]
- Lv, Z.Y.; Liu, T.F.; Zhang, P.; Benediktsson, J.A.; Lei, T.; Zhang, X. Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images. IEEE Trans. Geosci. Remote Sens. 2019, 1–21. [Google Scholar] [CrossRef]
- Liu, Z.; Shen, H.; Feng, G.; Hu, D. Tracking objects using shape context matching. Neurocomputing 2012, 83, 47–55. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, M.G.; Zhang, P.Z.; Su, L.Z.; Shi, J. Feature-level change detection using deep representation and feature change analysis for multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1666–1670. [Google Scholar] [CrossRef]
- Cai, L.P.; Shi, W.Z.; Hao, M.; Zhang, H.; Gao, L.P. A multi-feature fusion-based change detection method for remote sensing images. J. Indian Soc. Remote Sens. 2018, 46, 2015–2022. [Google Scholar] [CrossRef]
- Zheng, Z.F.; Cao, J.N.; Lv, Z.Y.; Benediktsson, J.A. Spatial-spectral feature fusion coupled with multi-scale segmentation voting decision for detecting land cover change with VHR remote sensing images. Remote Sens. 2019, 11, 1903. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.P.; Qiao, Y.; Wang, S.Z.; Yang, J.; Zhu, Y.M. A robust coherent point drift approach based on rotation invariant shape context. Neurocomputing 2017, 219, 455–473. [Google Scholar] [CrossRef]
- Panigrahi, S.; Verma, K.; Tripathi, P. Optimal threshold value determination for land change detection. Int. Arab J. Inf. Technol. 2019, 16, 265–274. [Google Scholar]
- Singh, S.; Talwar, R. Performance analysis of different threshold determination techniques for change vector analysis. J. Geol. Soc. India 2015, 86, 52–58. [Google Scholar] [CrossRef]
- Hao, M.; Hua, Z.; Li, Z.; Chen, B. Unsupervised change detection using a novel fuzzy c-means clustering simultaneously incorporating local and global information. Multimed. Tools Appl. 2017, 76, 20081–20098. [Google Scholar] [CrossRef]
- Xu, L.; Jing, W.; Song, H.; Chen, G. High-resolution remote sensing image change detection combined with pixel-level and object-level. IEEE Access 2019, 7, 78909–78918. [Google Scholar] [CrossRef]
- Roh, S.-B.; Oh, S.-K.; Pedrycz, W.; Seo, K.; Fu, Z. Design methodology for radial basis function neural networks classifier based on locally linear reconstruction and conditional fuzzy C-Means clustering. Int. J. Approx. Reason. 2019, 106, 228–243. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; He, P.; Hao, M.; Zhang, X. Novel approach to unsupervised change detection based on a robust semi-supervised FCM clustering algorithm. Remote Sens. 2016, 8, 264. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Myint, S.W.; Lu, P.; Wang, Q. Semi-automated landslide inventory mapping from bitemporal aerial photographs using change detection and level set method. Remote Sens. Environ. 2016, 175, 215–230. [Google Scholar] [CrossRef]
- Li, Z.; Shi, W.; Lu, P.; Yan, L.; Wang, Q.; Miao, Z. Landslide mapping from aerial photographs using change detection-based Markov random field. Remote Sens. Environ. 2016, 187, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Tan, K.; Jia, X.; Wang, X.; Chen, Y. A deep siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images. Remote Sens. 2020, 12, 205. [Google Scholar] [CrossRef] [Green Version]
- Muro, J.; Canty, M.; Conradsen, K.; Hüttich, C.; Nielsen, A.; Skriver, H.; Remy, F.; Strauch, A.; Thonfeld, F.; Menz, G. Short-term change detection in wetlands using sentinel-1 time series. Remote Sens. 2016, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Qian, N.; Chang, G.; Gao, J. Smoothing for continuous dynamical state space models with sampled system coefficients based on sparse kernel learning. Nonlinear Dyn. 2020, 100, 3597–3610. [Google Scholar] [CrossRef]
- Leichtle, T.; Geiss, C.; Wurm, M.; Lakes, T.; Taubenbock, H. Unsupervised change detection in VHR remote sensing imagery—An object-based clustering approach in a dynamic urban environment. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 15–27. [Google Scholar] [CrossRef]
- Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 509–522. [Google Scholar] [CrossRef] [Green Version]
- Ma, A.; Zhong, Y.; Zhang, L. Spectral-spatial clustering with a local weight parameter determination method for remote sensing imagery. Remote Sens. 2016, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Zhong, Y.; Ma, A. Change detection based on multi-feature clustering using differential evolution for landsat imagery. Remote Sens. 2018, 10, 1664. [Google Scholar] [CrossRef] [Green Version]
- Lal, A.M.; Anouncia, S.M. Adapted sparse fusion with constrained clustering for semisupervised change detection in remotely sensed images. J. Appl. Remote Sens. 2017, 11. [Google Scholar] [CrossRef]
- Mou, L.C.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.X.; Lu, X.Q. The spectral-spatial joint learning for change detection in multispectral imagery. Remote Sens. 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
Changed in the Reference Image | Unchanged in the Reference Image | |
---|---|---|
Detected Changes | True Positive (Tp) | False Positive (Fp) |
Detected No-changes | False Negative (Fn) | True Negative (Tn) |
Data Set | the Window Size N | the Number of Distance Divisions M | the Number of Angle Divisions N |
---|---|---|---|
Data set 1 | 9 | 4 | 12 |
Data set 2 | 9 | 5 | 12 |
Different Bands Combinations | ||||||||
---|---|---|---|---|---|---|---|---|
Band1 | Band2 | Band3 | Band1,2 | Band1,3 | Band2,3 | Band1,2 and 3 | ||
Data set 1 | Pt (%) | 29.73 | 36.51 | 26.08 | 26.44 | 26.70 | 28.08 | 25.88 |
KC | 0.4488 | 0.3931 | 0.4542 | 0.4311 | 0.4751 | 0.4666 | 0.4769 | |
Data set 2 | Pt (%) | 31.11 | 25.15 | 28.87 | 22.63 | 22.16 | 21.65 | 21.37 |
KC | 0.4889 | 0.5624 | 0.5173 | 0.5832 | 0.5712 | 0.5854 | 0.5863 |
Data Set | Methods | Pt (%) | KC | Time (s) |
---|---|---|---|---|
Data set 1 | CVA-EM | 18.50 | 0.4649 | 1.8 |
CVA-FCM | 25.88 | 0.4769 | 2.0 | |
CVA-Kmeans | 26.52 | 0.4677 | 2.1 | |
Data set 2 | CVA-EM | 16.73 | 0.6701 | 1.6 |
CVA-FCM | 21.37 | 0.5863 | 1.9 | |
CVA-Kmeans | 21.92 | 0.5769 | 1.8 |
Data Set | Methods | Pt (%) | KC | Time (s) |
---|---|---|---|---|
Data set 1 | LSSC-EM | 8.13 | 0.8061 | 21.4 |
LSSC-FCM | 7.82 | 0.8257 | 20.6 | |
LSSC-Kmeans | 7.84 | 0.8256 | 20.9 | |
Data set 2 | LSSC-EM | 3.17 | 0.9362 | 17.8 |
LSSC-FCM | 5.81 | 0.8836 | 18.7 | |
LSSC-Kmeans | 6.02 | 0.8797 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Hao, M.; Zhang, H. Unsupervised Change Detection Using Spectrum-Trend and Shape Similarity Measure. Remote Sens. 2020, 12, 3606. https://doi.org/10.3390/rs12213606
Tian Y, Hao M, Zhang H. Unsupervised Change Detection Using Spectrum-Trend and Shape Similarity Measure. Remote Sensing. 2020; 12(21):3606. https://doi.org/10.3390/rs12213606
Chicago/Turabian StyleTian, Yi, Ming Hao, and Hua Zhang. 2020. "Unsupervised Change Detection Using Spectrum-Trend and Shape Similarity Measure" Remote Sensing 12, no. 21: 3606. https://doi.org/10.3390/rs12213606
APA StyleTian, Y., Hao, M., & Zhang, H. (2020). Unsupervised Change Detection Using Spectrum-Trend and Shape Similarity Measure. Remote Sensing, 12(21), 3606. https://doi.org/10.3390/rs12213606