Two-Dimensional Simulation of Barley Growth and Yield Using a Model Integrated with Remote-Controlled Aerial Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Field Experiment
2.3. Proximal and Remote Sensing
2.4. RSCM System for Barley
2.5. Statistical Analysis
3. Results
3.1. Parameterization and Calibration of RSCM
3.2. Validation of RSCM and Two-Dimensional Simulation of Barley
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Site | Year | Season | Cultivar | L0 | a | b | c |
---|---|---|---|---|---|---|---|
CNU | 2018 | Autumn | Black | 0.0183 | 0.1667 | 0.00408 | 0.00069 |
Autumn | Heenchal | 0.0048 | 0.0527 | 0.00703 | 0.00027 | ||
Autumn | Hopum | 0.0063 | 0.0431 | 0.00951 | 0.00005 | ||
Autumn | Saechal | 0.0057 | 0.0325 | 0.00892 | 0.00021 | ||
GNU | 2018 | Autumn | Heenchal | 0.3652 | 0.0045 | 0.00099 | 0.00104 |
2019 | Spring | Heenchal | 0.0276 | 0.0598 | 0.00537 | 0.00255 | |
Autumn | Heenchal | 0.5509 | 0.2429 | 0.00653 | 0.00010 |
References
- Martin, J.D.; Leonard, W.H.; Stamp, D.L.; Waldren, R.P. Principles of Field Crop Production, 4th ed.; Pearson: London, UK, 2005. [Google Scholar]
- Nguyen, V.; Jeong, S.; Ko, J.; Ng, C.; Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 2019, 11, 2131. [Google Scholar] [CrossRef] [Green Version]
- Thornley, J.H.; Johnson, I.R. Plant and Crop Modelling: A Mathematical Approach to Plant and Crop Physiology; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Jeong, S.; Ko, J.; Yeom, J.M. Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Jeong, S.; Yeom, J.; Kim, H.; Ban, J.O.; Kim, H.Y. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 2015, 9, 096067. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Rojas, K.W.; Hanson, J.D.; Shaffer, M.J.; Ma, L. Root Zone Water Quality Model: Modeling Management Effects on Water Quality and Crop Production; Water Resources Publications, LLC: Highland Ranch, CO, USA, 2000. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Maas, S.J. Parameterized model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 1993, 85, 354–358. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop yield assessment from remote sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Moulin, S.; Bondeau, A.; Delecolle, R. Combining agricultural crop models and satellite observations: From field to regional scales. Int. J. Remote Sens. 1998, 19, 1021–1036. [Google Scholar] [CrossRef]
- Bouman, B.A.M. Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. Int. J. Remote Sens. 1992, 13, 2565–2581. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Ustin, S.L.; Whiting, M.L. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agron. J. 2005, 97, 641–653. [Google Scholar] [CrossRef] [Green Version]
- Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Kern, A.; Barcza, Z.; Marjanović, H.; Árendás, T.; Fodor, N.; Bónis, P.; Bognár, P.; Lichtenberger, J. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agric. For. Meteorol. 2018, 260–261, 300–320. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Choi, J.; Xue, W.; Yeom, J.M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 2018, 39, 2441–2462. [Google Scholar] [CrossRef]
- Huang, Y.; Ryu, Y.; Jiang, C.; Kimm, H.; Kim, S.; Kang, M.; Shim, K. BESS-Rice: A remote sensing derived and biophysical process-based rice productivity simulation model. Agric. For. Meteorol. 2018, 256–257, 253–269. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, J.H.; Wang, Y. Improving Spring Maize Yield Estimation at Field Scale by Assimilating Time-Series HJ-1 CCD Data into the WOFOST Model Using a New Method with Fast Algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Maas, S.J. GRAMI: A Crop Model Growth Model that Can Use Remotely Sensed Information; USDA-ARS: Washington, DC, USA, 1992; p. 78. [Google Scholar]
- Maas, S.J. Parameterized model of gramineous crop growth: I. leaf area and dry mass simulation. Agron. J. 1993, 85, 348–353. [Google Scholar] [CrossRef]
- Ko, J.; Maas, S.J.; Lascano, R.J.; Wanjura, D. Modification of the GRAMI model for cotton. Agron. J. 2005, 97, 6. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.; Maas, S.J.; Mauget, S.; Piccinni, G.; Wanjura, D. Modeling water-stressed cotton growth using within-season remote sensing data. Agron. J. 2006, 98, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Shawon, A.R.; Ko, J.; Ha, B.; Jeong, S.; Kim, D.K.; Kim, H.Y. Assessment of a Proximal Sensing-integrated Crop Model for Simulation of Soybean Growth and Yield. Remote Sens. 2020, 12, 410. [Google Scholar] [CrossRef] [Green Version]
- Yeom, J.M.; Jeong, S.; Jeong, G.; Ng, C.T.; Deo, R.C.; Ko, J. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 2018, 8, 16121. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Ko, J.; Kang, M.; Yeom, J.; Ng, C.T.; Lee, S.H.; Lee, Y.G.; Kim, H.Y. Geographical variations in gross primary production and evapotranspiration of paddy rice in the Korean Peninsula. Sci. Total Environ. 2020, 714, 136632. [Google Scholar] [CrossRef]
- Jeong, S.; Ko, J.; Kim, M.; Kim, J. Construction of an unmanned aerial vehicle remote sensing system for crop monitoring. J. Appl. Remote Sens. 2016, 10, 026027. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Nafziger, E.; Chowdhary, G.; Peng, B.; Jin, Z.; Wang, S.; Wang, S. Detecting In-Season Crop Nitrogen Stress of Corn for Field Trials Using UAV- and CubeSat-Based Multispectral Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 5153–5166. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.J.; Torres-Sánchez, J.; Clavero-Rumbao, I.; García-Ferrer, A.; Peña, J.M.; Borra-Serrano, I.; López-Granados, F. Assessing Optimal Flight Parameters for Generating Accurate Multispectral Orthomosaicks by UAV to Support Site-Specific Crop Management. Remote Sens. 2015, 7, 12793–12814. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Ryu, Y.; Baldocchi, D.D.; Welles, J.M.; Norman, J.M. On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agric. For. Meteorol. 2013, 174–175, 170–183. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the NASA Goddard Space Flight Center 3d ERTS-1 Symp, Greenbelt, MD, USA, 1 January 1974; pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Solberg, S.; Brunner, A.; Hanssen, K.H.; Lange, H.; Næsset, E.; Rautiainen, M.; Stenberg, P. Mapping LAI in a Norway spruce forest using airborne laser scanning. Remote Sens. Environ. 2009, 113, 2317–2327. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes: The Art of Scientific Computing; Cambridge University Press: New York, NY, USA, 1992. [Google Scholar]
- Nash, J.C. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation; CRC Press: Adam Hilger, NY, USA, 1990. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B 1977, 281, 277–294. [Google Scholar]
- Goyne, P.; Milroy, S.; Lilley, J.; Hare, J. Radiation interception, radiation use efficiency and growth of barley cultivars. Aust. J. Agric. Res. 1993, 44, 1351–1366. [Google Scholar] [CrossRef]
- Kemanian, A.R.; Stöckle, C.O.; Huggins, D.R. Variability of Barley Radiation-Use Efficiency. Crop Sci. 2004, 44, 1662–1672. [Google Scholar] [CrossRef]
- Manderscheid, R.; Pacholski, A.; Frühauf, C.; Weigel, H.J. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crop. Res. 2009, 110, 185–196. [Google Scholar] [CrossRef]
- Charles-Edwards, D.; Doley, D.; Rimmington, G.M. Modelling Plant Growth and Development; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Saeki, T. Light relations in plant communities. In Environmental Control of Plant Growth; Elsevier: Amsterdam, The Netherlands, 1963; pp. 79–94. [Google Scholar]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Szeicz, G.; Monteith, J.; Dos Santos, J. Tube solarimeter to measure radiation among plants. J. Appl. Ecol. 1964, 1, 169–174. [Google Scholar] [CrossRef]
- Gunn, S.; Farrar, J.F.; Collis, B.E.; Nason, M. Specific leaf area in barley: Individual leaves versus whole plants. New Phytol. 1999, 143, 45–51. [Google Scholar] [CrossRef]
- Pyankov, V.I.; Ivanova, L.A.; Lambers, H. Quantitative anatomy of photosynthetic tissues of plants species of different functional types in a boreal vegetation. In Inherent Variation in Plant Growth: Physiological Mechanisms and Ecological Consequences; Backhuys Publishers: Kerkwerve, The Netherlands, 1998; pp. 71–87. [Google Scholar]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Escalante, H.J.; Rodríguez-Sánchez, S.; Jiménez-Lizárraga, M.; Morales-Reyes, A.; de la Calleja, J.; Vazquez, R. Barley yield and fertilization analysis from UAV imagery: A deep learning approach. Int. J. Remote Sens. 2019, 40, 2493–2516. [Google Scholar] [CrossRef]
- Peña, J.M.; Ostos-Garrido, F.J.; Torres-Sánchez, J.; Pistón, F.; Castro, A.I.d. A UAV-based system for monitoring crop growth in wheat, barley and triticale phenotyping field trials. In Proceedings of the 12th European Conference on Precision Agriculture, Celebrada in Montpellier, Montpellier, France, 8–11 July 2019. [Google Scholar]
Equations | Description |
---|---|
∆D = MAX [T − Tb, 0] | ∆D, daily change in growing degree days (GDD); T, daily mean temperature; Tb, crop specific base temperature |
Q = β ∙ R ∙ (1 − e−k∙LAI) | Q, absorption of incident solar radiation (R); β, fraction of R; k, crop-specific light extinction coefficient; LAI, leaf area index |
∆M = Ɛ ∙ Q | ∆M, daily increase in above-ground dry mass; Ɛ, radiation use efficiency |
∆L = ∆M ∙ P1 ∙ S | ∆L, daily LAI increase; P1, fraction of ∆M allocated to new leaves; S, specific leaf area |
P1 = Max [1 − a ∙ eb∙D,0] | P1, dimensionless leaf-allocation function; a and b, parameters that control magnitude and shape of the function; D, cumulative GDD |
∆G = P2 ∙ ∆M | ∆G, daily increase in grain; P2, fraction of ∆M partitioned to grains |
P2 = Max [1 − Pa ∙ ePb ∙ f Gd,0] | P2, dimensionless grain-partitioning parameter; Pa and Pb, parameters that control the magnitude and shape of the function; and fGd is the grain partitioning factor based on the cumulative GDD |
Cultivar | LAI | AGDM | ||||||
---|---|---|---|---|---|---|---|---|
S | M | RMSE | NSE | S | M | RMSE | NSE | |
-------- m2 m−2 ------- | n/a | ------- g m−2 ------ | n/a | |||||
Black | 4.18 | 4.11 | 0.18 | 0.91 | 643.3 | 611.1 | 78.5 | 0.78 |
Heenchal | 3.52 | 3.43 | 0.35 | 0.83 | 548.0 | 515.1 | 53.4 | 0.88 |
Hopum | 3.12 | 3.07 | 0.34 | 0.78 | 540.3 | 588.0 | 60.8 | 0.81 |
Saechal | 4.38 | 4.32 | 0.26 | 0.80 | 561.8 | 588.0 | 91.4 | 0.81 |
Seeded Season | LAI | AGDM | ||||||
---|---|---|---|---|---|---|---|---|
S | M | RMSE | NSE | S | M | RMSE | NSE | |
-------- m2 m−2 ------- | n/a | ------- g m−2 ------ | n/a | |||||
Autumn 2018 | 2.08 | 2.06 | 0.16 | 0.96 | 225.8 | 156.0 | 74.89 | 0.55 |
Spring 2019 | 1.60 | 1.60 | 0.07 | 0.93 | 250.9 | 164.4 | 88.41 | 0.21 |
Autumn 2019 | 2.03 | 2.13 | 0.19 | 0.70 | 310.2 | 254.7 | 64.96 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shawon, A.R.; Ko, J.; Jeong, S.; Shin, T.; Lee, K.D.; Shim, S.I. Two-Dimensional Simulation of Barley Growth and Yield Using a Model Integrated with Remote-Controlled Aerial Imagery. Remote Sens. 2020, 12, 3766. https://doi.org/10.3390/rs12223766
Shawon AR, Ko J, Jeong S, Shin T, Lee KD, Shim SI. Two-Dimensional Simulation of Barley Growth and Yield Using a Model Integrated with Remote-Controlled Aerial Imagery. Remote Sensing. 2020; 12(22):3766. https://doi.org/10.3390/rs12223766
Chicago/Turabian StyleShawon, Ashifur Rahman, Jonghan Ko, Seungtaek Jeong, Taehwan Shin, Kyung Do Lee, and Sang In Shim. 2020. "Two-Dimensional Simulation of Barley Growth and Yield Using a Model Integrated with Remote-Controlled Aerial Imagery" Remote Sensing 12, no. 22: 3766. https://doi.org/10.3390/rs12223766
APA StyleShawon, A. R., Ko, J., Jeong, S., Shin, T., Lee, K. D., & Shim, S. I. (2020). Two-Dimensional Simulation of Barley Growth and Yield Using a Model Integrated with Remote-Controlled Aerial Imagery. Remote Sensing, 12(22), 3766. https://doi.org/10.3390/rs12223766