Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis
Abstract
:1. Introduction
2. Datasets and Methods
2.1. Radar MPE Dataset
2.2. Estimation of Parameters of AMS Probability Distribution
2.3. At-Site and Regional PFE Estimation Methods
2.3.1. Pixel-Based Method
2.3.2. Regional Spatial Bootstrap Method
3. Results
3.1. Characterization of Annual Maxima
3.2. Radar-Based PFE using Regional Sptail Bootstrap
3.3. Comparison Against Gauge-Based PFE
3.4. Effect of Regional Sample Size
4. Discussion
5. Conclusions
- The spatial bootstrap as a regional method can successfully alleviate the effect of short record availability in radar-based QPE (typically 10–20 years) by bootstrapping spatially from neighboring pixels to gain more information from a climatologically homogenous region.
- The use of the spatial bootstrap regional method resulted in PFE quantiles and distribution parameter spatial fields that are smoother and less noisy compared to the pixel-based approach. Spatial gradients in the PFE quantiles are distinctly evident across the domain of the entire state.
- Augmenting the sample size and/or the region of influence in the spatial bootstrap showed a significant reduction in the estimated uncertainty of the PFEs at different return periods.
- Compared to a pixel-based approach, the spatial bootstrap technique is less sensitive to observational and sampling variability and can provide more realistic representation of the PFE confidence intervals. Thus, when compared with the gauge-based NOAA Atlas 14 frequency estimates, PFEs from spatial bootstrap method can be considered more reliable than pixel-based estimation. However, for some cases where QPE estimates have inherent systematic bias especially for extreme rainfall, both of the spatial bootstrap and pixel-based estimation methods resulted in considerable underestimation in PFEs.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seo, D.-J.; Seed, A.; Delrieu, G. Radar and multisensor rainfall estimation for hydrologic applications. In Rainfall: State of the Science; Gebremichael, M., Ed.; American Geophysical Union: Washington, DC, USA, 2010. [Google Scholar]
- Pecho, J.; Fasko, P.; Lapin, M.; Gaál, L. Analysis of Rainfall Intensity-Duration Frequency Relationships in Slovakia (Estimation of Extreme Rainfall Return Periods); EGU General Assembly: Vienna, Austria, 2009. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology. In Water Resources Handbook; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Durrans, S.R.; Julian, L.T.; Yekta, M. Estimation of depth-area relationships using radar-rainfall data. J. Hydrol. Eng. 2002, 7, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.J.; DeGaetano, A.T. Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme areal precipitation amounts. J. Hydrol. 2005, 315, 203–219. [Google Scholar] [CrossRef]
- Olivera, F.; Choi, J.; Kim, D.; Li, M.-H. Estimation of average rainfall areal reduction factors in Texas using NEXRAD data. J. Hydrol. Eng. 2008, 13, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Overeem, A.; Buishand, T.A.; Holleman, I. Extreme rainfall analysis and estimation of depth-duration-frequency curves using weather radar. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Overeem, A.; Buishand, T.A.; Holleman, I.; Uijlenhoet, R. Extreme value modeling of areal rainfall from weather radar. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Cunnane, C. Methods and merits of regional flood frequency analysis. J. Hydrol. 1988, 100, 269–290. [Google Scholar] [CrossRef]
- Burn, D.H. Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour. Res. 1990, 26, 2257–2265. [Google Scholar] [CrossRef]
- Burn, D.H. An appraisal of the “region of influence” approach to flood frequency analysis. Hydrol. Sci. J. 1990, 35, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Pilona, P.J.; Adamowskib, K.; Alilab, Y. Regional analysis of annual maxima precipitation using L-moments. Atmos. Res. 1991, 27, 81–92. [Google Scholar] [CrossRef]
- Svensson, C.; Jones, D.A. Review of rainfall frequency estimation methods. J. Flood Risk Manag. 2010, 3, 296–313. [Google Scholar] [CrossRef] [Green Version]
- Hailegeorgis, T.T.; Thorolfsson, S.T.; Alfredsen, K. Regional frequency analysis of extreme precipitation with consideration of uncertainties to update IDF curves for the city of Trondheim. J. Hydrol. 2013, 498, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Naghavi, B.; Yu, F.X. Regional frequency analysis of extreme precipitation in Louisiana. J. Hydraul. Eng. 1995, 121, 819–827. [Google Scholar] [CrossRef]
- Eldardiry, H.; Habib, E.; Zhang, Y. On the use of radar-based quantitative precipitation estimates for precipitation frequency analysis. J. Hydrol. 2015, 531, 441–453. [Google Scholar] [CrossRef]
- Uboldi, F. A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution. Hydrol. Earth Syst. Sci. 2014, 18, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Perica, S. Precipitation Frequency Atlas of the United States, NOAA Atlas 14; USA Department of Commerce, National Oceanic and Atmospheric Adminstration, National Weather Service: Silver Spring, MD, USA, 2013; Volume 9.
- Smith, J.A.; Seo, D.J.; Baeck, M.L. An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res. 1996, 32, 2035–2045. [Google Scholar] [CrossRef]
- Ciach, G.J.; Krajewski, W.F.; Villarini, G. Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeorol. 2007, 8, 1325–1347. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F.; Ciach, G.J.; Zimmerman, D.L. Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res. 2009, 45, W01404. [Google Scholar] [CrossRef] [Green Version]
- Habib, E. Independent assessment of incremental complexity in NWS multisensor precipitation estimator algorithms. J. Hydrol. Eng. 2013, 18, 143–155. [Google Scholar] [CrossRef]
- Seo, D.J. Real-time estimation of rainfall fields using radar rainfall and rain gauge data. J. Hydrol. 1998, 208, 37–52. [Google Scholar] [CrossRef]
- Kitzmiller, D.; Miller, D.; Fulton, R.; Ding, F. Radar and multisensor precipitation estimation techniques in National Weather Service hydrologic operations. J. Hydrol. Eng. 2013, 18, 133–142. [Google Scholar] [CrossRef]
- Eldardiry, H.; Habib, E.; Zhang, Y.; Graschel, J. Artifacts in Stage IV NWS real-time multisensor precipitation estimates and impacts on identification of maximum series. J. Hydrol. Eng. 2015, 22, E4015003. [Google Scholar] [CrossRef]
- Greene, D.R.; Hudlow, M.D. Hydrometeorologic grid mapping procedures. In Proceedings of the AWRA International Symposium on Hydrometeorology, Denver, CO, USA, 13–17 June 1982. [Google Scholar]
- Faiers, G.E.; Keim, B.D.; Hirschboeck, K.K. A Synoptic evaluation of frequencies and intensities of extreme three-and 24-hour rainfall in Louisiana. Prof. Geogr. 1994, 46, 156–163. [Google Scholar] [CrossRef]
- Madsen, H.; Rasmussen, P.F.; Rosbjerg, D. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour. Res. 1997, 33, 747–757. [Google Scholar] [CrossRef]
- Hosking, J. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Martins, E.S.; Stedinger, J.R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 2000, 36, 737–744. [Google Scholar] [CrossRef]
- Hershfield, D.M. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; Technical Paper 40; USA Weather Bureau: Washington, DC, USA, 1961.
- Efron, B. Bootstrap methods: Another look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Kachroo, R.K.; Mkhandi, S.H.; Parida, B.P. Flood frequency analysis of southern Africa: I. Delineation of homogeneous regions. Hydrol. Sci. J. 2000, 45, 437–447. [Google Scholar] [CrossRef]
- Maddox, R.A.; Chappell, C.F.; Hoxit, L.R. Synoptic and meso-α scale aspects of flash flood events 1. Bull. Am. Meteorol. Soc. 1979, 60, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Habib, E. Ground based direct measurement. In Rainfall: State of the Science; Testik, F.Y., Mekonnen, G., Eds.; American Geophysical Union: Washington, DC, USA, 2010; Volume 191, pp. 61–77. [Google Scholar]
- Weather Bureau. Rainfall Intensity-Frequency Regime—Part 2: The Southeastern United States; Technical Paper No. 29 (TP-29); USA Weather Bureau: Washington, DC, USA, 1958.
- Vogel, R.M.; Shallcross, A.L. The moving blocks bootstrap versus parametric time series models. Water Resour. Res. 1996, 32, 1875–1882. [Google Scholar] [CrossRef]
- Ciach, G.J.; Morrissey, M.L.; Krajewski, W.F. Conditional bias in radar rainfall estimation. J. Appl. Meteorol. 2000, 39, 1941–1946. [Google Scholar] [CrossRef]
- Habib, E.; Qin, L. Application of a radar-rainfall uncertainty model to the NWS multi-sensor precipitation estimator products. Meteorol. Appl. 2013, 20, 276–286. [Google Scholar] [CrossRef]
- Wazneh, H.; Chebana, F.; Ouarda, T.B. Delineation of homogeneous regions for regional frequency analysis using statistical depth function. J. Hydrol. 2015, 521, 232–244. [Google Scholar] [CrossRef]
Gauge | Latitude | Longitude | NOAA Atlas14 AMS Size |
---|---|---|---|
Gauge (1) | 30.12° | −93.23° | 49 years |
Gauge (2) | 29.23° | −90.00° | 26 years |
Gauge (3) | 29.99° | −90.25° | 64 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldardiry, H.; Habib, E. Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis. Remote Sens. 2020, 12, 3767. https://doi.org/10.3390/rs12223767
Eldardiry H, Habib E. Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis. Remote Sensing. 2020; 12(22):3767. https://doi.org/10.3390/rs12223767
Chicago/Turabian StyleEldardiry, Hisham, and Emad Habib. 2020. "Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis" Remote Sensing 12, no. 22: 3767. https://doi.org/10.3390/rs12223767
APA StyleEldardiry, H., & Habib, E. (2020). Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis. Remote Sensing, 12(22), 3767. https://doi.org/10.3390/rs12223767