Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning
Abstract
:1. Introduction
2. Materials and Methods
2.1. CYGNSS
2.2. ASCAT
2.3. IMERG
2.4. Lightning
2.4.1. WWLLN
2.4.2. GLM
2.4.3. ISS LIS
2.5. Synthesis
3. Results
3.1. Global comparison of CYGNSS and ASCAT
3.2. Lightning Analysis
3.2.1. Overall Statistics
3.2.2. Trends Versus Precipitation Rates
3.2.3. Trends Versus Flash Rates
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Thorpe, A.J.; Miller, M.J.; Moncrieff, M.W. Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines. Q. J. R. Meteorol. Soc. 1982, 108, 739–762. [Google Scholar] [CrossRef]
- Garg, P.; Nesbitt, S.W.; Lang, T.J.; Priftis, G.; Chronis, T.; Thayer, J.D.; Hence, D.A. Identifying and Characterizing Tropical Oceanic Mesoscale Cold Pools using Spaceborne Scatterometer Winds. J. Geophys. Res. Atmos. 2020, 125, e2019JD031812. [Google Scholar] [CrossRef]
- De Szoeke, S.P.; Skyllingstad, E.D.; Zuidema, P.; Chandra, A. Cold Pools and Their Influence on the Tropical Marine Boundary Layer. J. Atmos. Sci. 2017, 74, 1149–1168. [Google Scholar] [CrossRef]
- Feng, Z.; Hagos, S.; Rowe, A.K.; Burleyson, C.; Martini, M.N.; Szoeke, S.P. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst. 2015, 7, 357–381. [Google Scholar] [CrossRef] [Green Version]
- Atkins, N.T.; Wakimoto, R.M. Wet Microburst Activity over the Southeastern United States: Implications for Forecasting. Weather Forecast. 1991, 6, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys. Res. Space Phys. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Deierling, W.; Petersen, W.A.; Latham, J.; Ellis, S.; Christian, H.J. The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Basarab, B.M.; Rutledge, S.A.; Fuchs, B.R. An improved lightning flash rate parameterization developed from Colorado DC3 thunderstorm data for use in cloud-resolving chemical transport models. J. Geophys. Res. Atmos. 2015, 120, 9481–9499. [Google Scholar] [CrossRef]
- Carey, L.D.; Schultz, E.V.; Schultz, C.J.; Deierling, W.; Petersen, W.A.; Bain, A.L.; Pickering, K.E. An Evaluation of Relationships between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms. Atmosphere 2019, 10, 796. [Google Scholar] [CrossRef] [Green Version]
- Petersen, W.A.; Christian, H.J.; Rutledge, S.A. TRMM observations of the global relationship between ice water content and lightning. Geophys. Res. Lett. 2005, 32, 14819. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Space Phys. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Lang, T.; Rutledge, S.A. A Framework for the Statistical Analysis of Large Radar and Lightning Datasets: Results from STEPS 2000. Mon. Weather Rev. 2011, 139, 2536–2551. [Google Scholar] [CrossRef]
- Williams, E.; Boldi, B.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.; Goodman, S.; Raghavan, R.; Buechler, D. The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res. 1999, 51, 245–265. [Google Scholar] [CrossRef] [Green Version]
- Schultz, C.J.; Carey, L.D.; Schultz, E.V.; Blakeslee, R.J. Insight into the Kinematic and Microphysical Processes that Control Lightning Jumps. Weather Forecast. 2015, 30, 1591–1621. [Google Scholar] [CrossRef]
- Lin, W.; Portabella, M.; Stoffelen, A.; Verhoef, A.; Turiel, A. ASCAT Wind Quality Control Near Rain. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4165–4177. [Google Scholar] [CrossRef] [Green Version]
- Portabella, M.; Stoffelen, A.; Lin, W.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera-Poy, J. Rain Effects on ASCAT-Retrieved Winds: Toward an Improved Quality Control. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2495–2506. [Google Scholar] [CrossRef]
- Kilpatrick, T.; Xie, S.-P. ASCAT observations of downdrafts from mesoscale convective systems. Geophys. Res. Lett. 2015, 42, 1951–1958. [Google Scholar] [CrossRef]
- Ruf, C.; Chew, C.; Lang, T.J.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- CYGNSS. CYGNSS Level 2 Science Data Record Version 2.1. Ver. 2.1; PO.DAAC: Pasadena, CA, USA, 2018; Available online: https://doi.org/10.5067/CYGNS-L2X21 (accessed on 1 January 2020).
- Hoover, K.E.; Mecikalski, J.R.; Lang, T.J.; Li, X.; Castillo, T.J.; Chronis, T. Use of an End-to-End-Simulator to Analyze CYGNSS. J. Atmos. Ocean. Technol. 2018, 35, 35–55. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In KDD-96: Proceedings: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; Simoudis, E., Han, J., Fayyad, U.M., Eds.; AAAI Press: Menlo Park, CA, USA, 1996; pp. 226–231. [Google Scholar]
- PyGNSS. Python Interface to Cyclone Global Navigation Satellite System (CYGNSS) Wind Dataset. Available online: https://github.com/nasa/PyGNSS (accessed on 1 January 2020).
- EUMETSAT/OSI SAF. MetOp-A ASCAT Level 2 Ocean Surface Wind Vectors Optimized for Coastal Ocean: Ver. Operational/Near-Real-Time; PO.DAAC: Pasadena, CA, USA, 2010. Available online: https://podaac.jpl.nasa.gov/dataset/ASCATA-L2-Coastal (accessed on 1 January 2020).
- EUMETSAT/OSI SAF. MetOp-B ASCAT Level 2 Ocean Surface Wind Vectors Optimized for Coastal Ocean: Ver. Operational/Near-Real-Time; PO.DAAC: Pasadena, CA, USA, 2013. Available online: https://podaac.jpl.nasa.gov/dataset/ASCATA-L2-Coastal (accessed on 1 January 2020).
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-SatellitE Retrievals for GPM (IMERG) Technical Documentation; NASA/GSFC Code 612 Tech. Doc.; IMERG Tech Document: Greenbelt, MD, USA, 2015. Available online: http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf (accessed on 26 March 2020).
- Hutchins, M.L.; Holzworth, R.H.; Brundell, J.B.; Rodger, C.J. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci. 2012, 47, 6005. [Google Scholar] [CrossRef]
- Bürgesser, R.E. Assessment of the World Wide Lightning Location Network (WWLLN) detection efficiency by comparison to the Lightning Imaging Sensor (LIS). Q. J. R. Meteorol. Soc. 2017, 143, 2809–2817. [Google Scholar] [CrossRef]
- Lang, T.J. World-Wide Lightning Location Network. 2020. Available online: https://doi.org/10.5067/Suborbital/CAMP2EX2018/DATA001 (accessed on 1 January 2020).
- Goodman, S.J.; Blakeslee, R.J.; Koshak, W.J.; Mach, D.; Bailey, J.; Buechler, D.; Carey, L.; Schultz, C.; Bateman, M.; McCaul, E.; et al. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Rudlosky, S.; Goodman, S.; Virts, K.S.; Bruning, E.C. Initial Geostationary Lightning Mapper Observations. Geophys. Res. Lett. 2019, 46, 1097–1104. [Google Scholar] [CrossRef]
- Blakeslee, R.J.; Lang, T.; Koshak, W.J.; Buechler, D.; Gatlin, P.; Mach, D.M.; Stano, G.T.; Virts, K.S.; Walker, T.D.; Cecil, D.J.; et al. Three Years of the Lightning Imaging Sensor Onboard the International Space Station: Expanded Global Coverage and Enhanced Applications. J. Geophys. Res. Atmos. 2020, 125. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Blakeslee, R.J. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data; NASA Global Hydrology Resource Center DAAC: Huntsville, AL, USA, 2019. [CrossRef]
- Mach, D.M.; Christian, H.J.; Blakeslee, R.J.; Boccippio, D.J.; Goodman, S.J.; Boeck, W.L. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; McKague, D.S. Assessment of CYGNSS Wind Speed Retrieval Uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 87–97. [Google Scholar] [CrossRef]
- Balasubramaniam, R.; Ruf, C.S. Improved Calibration of Cygnss Measurements for Downbursts in the Intertropical Convergence Zone. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 3987–3990. [Google Scholar]
- Balasubramaniam, R.; Ruf, C.S. The Impact of Rain on L1 GNSS-R Radar Scattering Cross-Section. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7900–7903. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Zavorotny, V.U.; Wickert, J.; Reich, S. Can GNSS Reflectometry Detect Precipitation Over Oceans? Geophys. Res. Lett. 2018, 45, 12585–12592. [Google Scholar] [CrossRef] [Green Version]
- Asgarimehr, M.; Wickert, J.; Reich, S. Evaluating Impact of Rain Attenuation on Space-borne GNSS Reflectometry Wind Speeds. Remote Sens. 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Priftis, G.; Lang, T.; Chronis, T. Combining ASCAT and NEXRAD Retrieval Analysis to Explore Wind Features of Mesoscale Oceanic Systems. J. Geophys. Res. Atmos. 2018, 123, 10341–10360. [Google Scholar] [CrossRef]
- CYGNSS. CYGNSS Level 2 Climate Data Record Version 1.0. Ver. 1.0; PO.DAAC: Pasadena, CA, USA, 2020. Available online: https://doi.org/10.5067/CYGNS-L2C10 (accessed on 22 May 2020).
- Lang, T.J. Validation of Satellite-Based Wind Observations during PISTON; PISTON Science Team Workshop: Fort Collins, CO, USA, 2019. Available online: https://ntrs.nasa.gov/api/citations/20190032972/downloads/20190032972.pdf (accessed on 1 November 2020).
- Petersen, W.A.; Rutledge, S.A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Space Phys. 1998, 103, 14025–14040. [Google Scholar] [CrossRef]
- Tapia, A.; Smith, J.A.; Dixon, M. Estimation of Convective Rainfall from Lightning Observations. J. Appl. Meteorol. 1998, 37, 1497–1509. [Google Scholar] [CrossRef]
- Bang, S.D.; Zipser, E.J. Differences in size spectra of electrified storms over land and ocean. Geophys. Res. Lett. 2015, 42, 6844–6851. [Google Scholar] [CrossRef]
- Bang, S.D.; Zipser, E.J. Seeking reasons for the differences in size spectra of electrified storms over land and ocean. J. Geophys. Res. Atmos. 2016, 121, 9048–9068. [Google Scholar] [CrossRef]
Variable | ASCAT-A | ASCAT-B |
---|---|---|
No Rain RMSD (m s−1) | 1.94 | 1.93 |
No Rain Offset (m s−1) | +0.52 | +0.53 |
No Rain Matchups | 39,763,736 | 40,099,155 |
Rain RMSD (m s−1) | 2.47 | 2.46 |
Rain Offset (m s−1) | +0.45 | +0.47 |
Rain Matchups | 4,238,318 | 4,275,117 |
Variable | Mean | 99% Conf. Int. (±) | Samples | RCG > 10 (Mean) | Rain < 6 mm h−1 (Mean) |
---|---|---|---|---|---|
CYGNSS FDS with WWLLN (m s−1) | 8.44 | 0.01 | 1,184,585 | 8.61 | 8.34 |
CYGNSS FDS without WWLLN (m s−1) | 8.62 | 0.00 | 15,227,308 | 8.85 | 8.59 |
CYGNSS YSLF with WWLLN (m s−1) | 9.14 | 0.01 | 1,176,396 | 8.91 | 9.00 |
CYGNSS YSLF without WWLLN (m s−1) | 9.25 | 0.00 | 15,075,239 | 8.96 | 9.19 |
ASCAT with WWLLN (m s−1) | 8.52 | 0.03 | 97,220 | N/A | 8.14 |
ASCAT without WWLLN (m s−1) | 8.12 | 0.01 | 1,273,200 | N/A | 8.05 |
IMERG with WWLLN (mm h−1) | 2.95 | 0.01 | 1,184,585 | N/A | N/A |
IMERG without WWLLN (mm h−1) | 0.89 | 0.00 | 15,227,308 | N/A | N/A |
CYGNSS Std. Dev. with WWLLN (m s−1) | 1.13 | 0.01 | 28,853 | N/A | N/A |
CYGNSS Std. Dev. without WWLLN (m s−1) | 1.44 | 0.00 | 294,024 | N/A | N/A |
Variable | Mean | 99% Conf. Int. (±) | Samples | RCG > 10 (Mean) | Rain < 6 mm h−1 (Mean) |
---|---|---|---|---|---|
CYGNSS FDS with GLM (m s−1) | 8.35 | 0.01 | 937,027 | 8.50 | 8.25 |
CYGNSS FDS without GLM (m s−1) | 8.72 | 0.00 | 19,673,569 | 8.92 | 8.69 |
CYGNSS YSLF with GLM (m s−1) | 8.84 | 0.02 | 929,953 | 8.58 | 8.69 |
CYGNSS YSLF without GLM (m s−1) | 9.24 | 0.00 | 19,534,703 | 8.97 | 9.20 |
ASCAT with GLM (m s−1) | 8.72 | 0.03 | 79,225 | N/A | 8.37 |
ASCAT without GLM (m s−1) | 8.10 | 0.01 | 1,752,437 | N/A | 8.03 |
IMERG with GLM (mm h−1) | 2.80 | 0.01 | 937,027 | N/A | N/A |
IMERG without GLM (mm h−1) | 0.92 | 0.00 | 19,673,569 | N/A | N/A |
CYGNSS Std. Dev. with GLM (m s−1) | 1.08 | 0.01 | 25,070 | N/A | N/A |
CYGNSS Std. Dev. without GLM (m s−1) | 1.58 | 0.00 | 303,731 | N/A | N/A |
Variable | Mean | 99% Conf. Int. (±) | Samples | RCG > 10 (Mean) | Rain < 6 mm h−1 (Mean) |
---|---|---|---|---|---|
CYGNSS FDS with LIS (m s−1) | 8.36 | 0.02 | 154,517 | 8.57 | 8.22 |
CYGNSS FDS without LIS (m s−1) | 8.70 | 0.01 | 2,587,259 | 8.90 | 8.67 |
CYGNSS YSLF with LIS (m s−1) | 9.01 | 0.04 | 152,631 | 8.80 | 8.82 |
CYGNSS YSLF without LIS (m s−1) | 9.19 | 0.01 | 2,568,336 | 8.86 | 9.15 |
ASCAT with LIS (m s−1) | 8.90 | 0.09 | 11,664 | N/A | 8.65 |
ASCAT without LIS (m s−1) | 8.30 | 0.02 | 235,198 | N/A | 8.25 |
IMERG with LIS (mm h−1) | 3.43 | 0.04 | 154,517 | N/A | N/A |
IMERG without LIS (mm h−1) | 0.96 | 0.00 | 2,587,259 | N/A | N/A |
CYGNSS Std. Dev. with LIS (m s−1) | 1.02 | 0.03 | 4,394 | N/A | N/A |
CYGNSS Std. Dev. without LIS (m s−1) | 0.87 | 0.01 | 147,278 | N/A | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, T.J. Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning. Remote Sens. 2020, 12, 3968. https://doi.org/10.3390/rs12233968
Lang TJ. Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning. Remote Sensing. 2020; 12(23):3968. https://doi.org/10.3390/rs12233968
Chicago/Turabian StyleLang, Timothy J. 2020. "Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning" Remote Sensing 12, no. 23: 3968. https://doi.org/10.3390/rs12233968
APA StyleLang, T. J. (2020). Comparing Winds near Tropical Oceanic Precipitation Systems with and without Lightning. Remote Sensing, 12(23), 3968. https://doi.org/10.3390/rs12233968