Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing
Abstract
:1. Introduction
2. Emissivity Measurement Techniques
3. Methods
3.1. Instrumentation, Measurements, and Post-Processing
3.1.1. Emissivity Determination Using the Laboratory FTIR Spectrometer
3.1.2. Emissivity Determination Using the Field Portable FTIR Spectrometers
3.1.3. Emissivity Determination Using the Emissivity Box
3.2. Sites and Experimental Samples
3.2.1. Sample Preparation
3.3. Emissivity Measurement Comparison
3.4. Evaluation of Impact on LST
4. Results
4.1. Emissivity Measurement Inter-comparison
4.1.1. Spectral Emissivities
Alconbury
Grosseto and Duxford
4.1.2. Broadband Emissivities
4.2. Impact of Measurement Differences on LST Estimation
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Norman, J.M.; Becker, F. Terminology in thermal infrared remote sensing of natural surfaces. Remote. Sens. Rev. 1995, 12, 159–173. [Google Scholar] [CrossRef]
- Kuenzer, C.; Dech, S. Theoretical Background of Thermal Infrared Remote Sensing. In Land Remote Sensing and Global Environmental Change; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; Volume 17, pp. 1–26. [Google Scholar]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol, Version 1.1.; National Aeronautics and Space Administration: Washington, DC, USA, 2018; p. 58. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote. Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Kustas, W. Thermal Remote Sensing of Drought and Evapotranspiration. Eos 2008, 89, 233–234. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S.; Fisher, J.; Lee, C. ECOSTRESS, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5494–5496. [Google Scholar]
- World Meteorological Organization Essential Climate Variables. Available online: https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables (accessed on 16 November 2020).
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote. Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Hecker, C.; Smith, T.E.L.; da Luz, B.R.; Wooster, M.J. Thermal Infrared Spectroscopy in the Laboratory and Field in Support of Land Surface Remote Sensing. In Land Remote Sensing and Global Environmental Change; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; Volume 17, pp. 43–67. [Google Scholar]
- Göttsche, F.-M.; Hulley, G.C. Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region. Remote. Sens. Environ. 2012, 124, 149–158. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.; Poutier, L.; Langlois, S.; Wimmer, W.; Santos, V.G.; Coll, C.; Niclos, R.; Arbelo, M.; Monchau, J.-P. Report from the Field Inter-Comparison Experiment (FICE) for Land Surface Temperature (OFE-D130-LSR-FICE-Report-V1-Iss-1-Ver-1; ESA: Noordwijk, The Netherlands, 2018. [Google Scholar]
- Silvestri, M.; Musacchio, M.; Cammarano, D.; Fabrizia Buongiorno, M.; Amici, S.; Piscini, A. Comparison of in-situ measurements and satellite-derived surface emissivity over Italian volcanic areas. EGUGA 2016, 18, 1751. [Google Scholar]
- Sobrino, J.A.; Jimenez, J.C.; Labed-Nachbrand, J.; Nerry, F. Surface emissivity retrieval from Digital Airborne Imaging Spectrometer data. J. Geophys. Res. Space Phys. 2002, 107, 24. [Google Scholar] [CrossRef] [Green Version]
- Mira, M.; Schmugge, T.; Valor, E.; Caselles, V.; Coll, C. Comparison of Thermal Infrared Emissivities Retrieved with the Two-Lid Box and the TES Methods with Laboratory Spectra. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 1012–1021. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenezmunoz, J.; Verhoef, W. Canopy directional emissivity: Comparison between models. Remote. Sens. Environ. 2005, 99, 304–314. [Google Scholar] [CrossRef]
- Salisbury, J.W. Spectral Measurements Field Guide; Earth Satellite Corporation: Washington, DC, USA, 1998. [Google Scholar]
- Strackerjan, K.-E.; Kerekes, J.P.; Salvaggio, C. Spectral reflectance and emissivity of man-made surfaces contaminated with environmental effects. Opt. Eng. 2008, 47, 106201. [Google Scholar] [CrossRef] [Green Version]
- Kotthaus, S.; Smith, T.E.; Wooster, M.J.; Grimmond, C. Derivation of an urban materials spectral library through emittance and reflectance spectroscopy. ISPRS J. Photogramm. Remote. Sens. 2014, 94, 194–212. [Google Scholar] [CrossRef] [Green Version]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote. Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Snyder, W. Thermal Infrared (3–14 μm) bidirectional reflectance measurements of sands and soils. Remote. Sens. Environ. 1997, 60, 101–109. [Google Scholar] [CrossRef]
- Laukamp, C.; Lau, I.; Mason, P.; Warren, P.; Huntington, J.; Green, A.; Whitbourn, L.; Wright, W.; Connor, P.; Lau, I.C. CSIRO Thermal Infrared Spectral Library—Part 1: Evaluation and Status Report; CSIRO: Canberra, Australia, 2015. [Google Scholar]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote. Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Sabol, J.D.E.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field validation of the ASTER Temperature–Emissivity Separation algorithm. Remote. Sens. Environ. 2009, 113, 2328–2344. [Google Scholar] [CrossRef]
- Schmugge, T.; Ogawa, K. Validation of Emissivity Estimates from ASTER and MODIS Data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Sydney, Australia, 9–13 July 2001; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2006; pp. 260–262. [Google Scholar]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote. Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Trigo, I.F.; Peres, L.F.; Dacamara, C.C.; Freitas, S.C. Thermal Land Surface Emissivity Retrieved From SEVIRI/Meteosat. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 307–315. [Google Scholar] [CrossRef]
- Martins, J.P.; Coelho e Freitas, S.; Trigo, I.F.; Barroso, C.; Macedo, J. Copernicus Global Land Operations-Lot I “Vegetation and Energy” Algorithm Theoretical Basis Document, Land Surface Temperature—LST V1:2, Issue I1.41; Instituto Português do Mar e da Atmosfera: Lisbon, Portugal, 2019. [Google Scholar]
- Sobrino, J.A.; Jimenez, J.C.; Soria, G.; Gomez, M.; Barella-Ortiz, A.; Romaguera, M.; Zaragoza, M.; Julien, Y.; Cuenca, J.; Atitar, M.; et al. Thermal remote sensing in the framework of the SEN2FLEX project: Field measurements, airborne data and applications. Int. J. Remote. Sens. 2008, 29, 4961–4991. [Google Scholar] [CrossRef]
- Langsdale, M.F.; Wooster, M.J.; Harrison, J.J.; Koehl, M.; Hecker, C.A.; Hook, S.J.; Abbott, E.A.; Johnson, W.R.; Maturilli, A.; Poutier, L.; et al. Spectral emissivity (SE) measurement uncertainties across 2.5–14 μm derived from a round-robin study made across international laboratories. Remote Sens. submitted.
- Korb, A.R.; Dybwad, P.; Wadsworth, W.; Salisbury, J.W. Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity. Appl. Opt. 1996, 35, 1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvaggio, C.; Miller, C.J. Comparison of field- and laboratory-collected midwave and longwave infrared emissivity spectra/data reduction techniques. In Aerospace/Defense Sensing, Simulation, and Controls; Shen, S.S., Descour, M.R., Eds.; SPIE: London, UK, 2001; Volume 4381, pp. 549–558. [Google Scholar]
- Rubio, E.; Caselles, V.; Coll, C.; Valour, E.; Sospedra, F. Thermal–infrared emissivities of natural surfaces: Improvements on the experimental set-up and new measurements. Int. J. Remote. Sens. 2003, 24, 5379–5390. [Google Scholar] [CrossRef]
- Rubio, E. Emissivity measurements of several soils and vegetation types in the 8–14, μm Wave band: Analysis of two field methods. Remote. Sens. Environ. 1997, 59, 490–521. [Google Scholar] [CrossRef]
- Buettner, K.J.K.; Kern, C.D. The determination of infrared emissivities of terrestrial surfaces. J. Geophys. Res. Space Phys. 1965, 70, 1329–1337. [Google Scholar] [CrossRef]
- Combs, A.C.; Weickmann, H.K.; Mader, C.; Tebo, A. Application of Infrared Radiometers to Meteorology. J. Appl. Meteorol. 1965, 4, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Göttsche, F.-M.; Olesen, F.-S. Improved field method for determining land surface emissivity. Recent Adv. Quant. Remote Sens. 2017, 55, 4743–4756. [Google Scholar]
- Nerry, F.; Labed, J.; Stoll, M.P. Spectral properties of land surfaces in the thermal infrared: 2. Field method for spectrally averaged emissivity measurements. J. Geophys. Res. Space Phys. 1990, 95, 7045. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Caselles, V. A field method for measuring the thermal infrared emissivity. ISPRS J. Photogramm. Remote. Sens. 1993, 48, 24–31. [Google Scholar] [CrossRef]
- Hook, S.J.; Kahle, A.B. The micro fourier transform interferometer (μFTIR)—A new field spectrometer for acquisition of infrared data of natural surfaces. Remote. Sens. Environ. 1996, 56, 172–181. [Google Scholar] [CrossRef]
- Salvaggio, C.; Miller, C.J. Methodologies and protocols for the collection of midwave and longwave infrared emissivity spectra using a portable field spectrometer. In Aerospace/Defense Sensing, Simulation, and Controls; Shen, S.S., Descour, M.R., Eds.; SPIE: London, UK, 2001; Volume 4381, pp. 539–549. [Google Scholar]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data. Int. J. Remote. Sens. 2006, 27, 999–1014. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; Valor, E.; Coll, C.; Niclòs, R. Comparison and Evaluation of the TES and ANEM Algorithms for Land Surface Temperature and Emissivity Separation over the Area of Valencia, Spain. Remote. Sens. 2017, 9, 1251. [Google Scholar] [CrossRef] [Green Version]
- Monchau, J.-P.; Marchetti, M.; Ibos, L.; Dumoulin, J.; Feuillet, V.; Candau, Y. Infrared Emissivity Measurements of Building and Civil Engineering Materials: A New Device for Measuring Emissivity. Int. J. Thermophys. 2013, 35, 1817–1831. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote. Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. MODIS Land Surface Temperature and Emissivity Products. In Land Remote Sensing and Global Environmental Changes; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer International Publishing: London, UK, 2010; pp. 563–577. [Google Scholar]
- da Luz, B.R.; Crowley, J.K. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm). Remote. Sens. Environ. 2007, 109, 393–405. [Google Scholar] [CrossRef]
- Salisbury, J.W.; D’Aria, D.M. Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote. Sens. Environ. 1992, 42, 83–106. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Wald, A.; D’Aria, D.M. Thermal-infrared remote sensing and Kirchhoff’s law: 1. Laboratory measurements. J. Geophys. Res. Space Phys. 1994, 99, 11897–11911. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.F.; Bork-Unkelbach, A.; Martin, M.A. Long Term Validation of Land Surface Temperature Retrieved from MSG/SEVIRI with Continuous in-Situ Measurements in Africa. Remote. Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Kant, Y.; Badarinath, K.V.S. Ground-based method for measuring thermal infrared effective emissivities: Implications and perspectives on the measurement of land surface temperature from satellite data. Int. J. Remote. Sens. 2002, 23, 2179–2191. [Google Scholar] [CrossRef]
- Mallick, J.; Singh, C.K.; Shashtri, S.; Rahman, A.; Mukherjee, S. Land surface emissivity retrieval based on moisture index from LANDSAT TM satellite data over heterogeneous surfaces of Delhi city. Int. J. Appl. Earth Obs. Geoinformat. 2012, 19, 348–358. [Google Scholar] [CrossRef]
- Coll, C.; Santos, V.G.; Niclòs, R.; Caselles, V. Test of the MODIS Land Surface Temperature and Emissivity Separation Algorithm with Ground Measurements Over a Rice Paddy. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 3061–3069. [Google Scholar] [CrossRef]
- Niclòs, R.; Galve, J.M.; Valiente, J.A.; Estrela, M.J.; Coll, C. Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote. Sens. Environ. 2011, 115, 2126–2140. [Google Scholar] [CrossRef]
- Kanani, K.; Poutier, L.; Nerry, F.; Stoll, M.-P. Directional effects consideration to improve out-doors emissivity retrieval in the 3–13 m domain. Opt. Express 2007, 15, 12464. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, Y.; Matsunaga, T.; Yamaguchi, Y.; Ogawa, K.; Rokugawa, S.; Uchida, K.; Muraoka, H.; Kaku, M. A comparison of thermal infrared emissivity spectra measured in situ, in the laboratory, and derived from thermal infrared multispectral scanner (TIMS) data in Cuprite, Nevada, U.S.A. Int. J. Remote. Sens. 1997, 18, 1571–1581. [Google Scholar] [CrossRef]
- Horton, K.A.; Johnson, J.R.; Lucey, P.G. Infrared Measurements of Pristine and Disturbed Soils 2. Environmental Effects and Field Data Reduction. Remote. Sens. Environ. 1998, 64, 47–52. [Google Scholar] [CrossRef]
- Hecker, C.; Hook, S.J.; van der Meijde, M.; Bakker, W.; van Der Werff, H.; Wilbrink, H.; van Ruitenbeek, F.J.; de Smeth, B.; van der Meer, F.D. Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures. Sensors 2011, 11, 10981–10999. [Google Scholar] [CrossRef]
- Nicodemus, F.E. Directional Reflectance and Emissivity of an Opaque Surface. Appl. Opt. 1965, 4, 767–775. [Google Scholar] [CrossRef]
- Bruker Corporation. Opus RS/E Analysis and Control Sorftware for the Remote Sensing System EM27: User Manual; Bruker Corporation: Billerica, MA, USA, 2010. [Google Scholar]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. Def. Security 2005, 5806, 662–667. [Google Scholar] [CrossRef]
- Hulley, G.C.; Ghent, D.; Göttsche, F.M.; Guillevic, P.C.; Mildrexler, D.J.; Coll, C. Land Surface Temperature. In Taking the Temperature of the Earth; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 57–127. [Google Scholar]
- Ghent, D.; Dodd, E.; Lerebourg, C. Ground-Based Observations for Validation (GBOV) of Copernicus Global Land Products, Algorithm Theoretical Basis Document Land Surface Temperature products. Geophysical Res. Abstr. 2018, 21, 1773. [Google Scholar]
- Guillevic, P.C.; Privette, J.L.; Coudert, B.; Palecki, M.A.; Demarty, J.; Ottlé, C.; Augustine, J.A. Land Surface Temperature product validation using NOAA’s surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote. Sens. Environ. 2012, 124, 282–298. [Google Scholar] [CrossRef] [Green Version]
- Meerdink, S.K.; Roberts, D.; Hulley, G.; Gader, P.; Pisek, J.; Adamson, K.; King, J.; Hook, S.J. Plant species’ spectral emissivity and temperature using the hyperspectral thermal emission spectrometer (HyTES) sensor. Remote. Sens. Environ. 2019, 224, 421–435. [Google Scholar] [CrossRef]
- Hu, X.; Ren, H.; Tansey, K.; Zheng, Y.; Ghent, D.; Liu, X.; Yan, L. Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries. Agric. For. Meteorol. 2019, 279, 107707. [Google Scholar] [CrossRef]
- Masiello, G.; di Serio, C.; de Feis, I.; Amoroso, M.; Venafra, S.; Trigo, I.F.; Watts, P.D. Kalman filter physical retrieval of surface emissivity and temperature from geostationary infrared radiances. Atmos. Meas. Tech. 2013, 6, 3613–3634. [Google Scholar] [CrossRef] [Green Version]
- Silvestri, M.; Romaniello, V.; Hook, S.; Musacchio, M.; Teggi, S.; Buongiorno, M.F. First Comparisons of Surface Temperature Estimations between ECOSTRESS, ASTER and Landsat 8 over Italian Volcanic and Geothermal Areas. Remote. Sens. 2020, 12, 184. [Google Scholar] [CrossRef] [Green Version]
Method | Overview | References |
---|---|---|
Emissivity Box Method | One- and two-lid variants of the emissivity box method, used to determine the LWIR broadband emissivity of a surface | [33,34,35,36,37,38,39] |
Portable FTIR Spectrometer Approach | Use of field-portable Fourier Transform Infrared (FTIR) spectrometer to estimate LWIR surface spectral emissivity | [31,32,40,41] |
Temperature and Emissivity (TES) retrieval algorithm applied to a multi-band radiometer | Application of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Temperature and Emissivity Separation (TES) algorithm with in situ radiance measurements obtained using multi-band radiometers | [42,43] |
Novel Emissiometer | Novel instrument combining an oscillating TIR radiance source with digital signal processing to determine the band-effective emissivity of a radiometer | [12,44] |
Sun Shadow Method | Similar approach to day/night LST retrieval algorithm adapted to in situ measurements in sun and sun-shadow with spectroradiometer to derive spectral emissivities | [45,46] |
Parameter | Bruker EM27 | Designs and Prototypes μFTIR |
---|---|---|
Spectral Range | 4.5–14.3 μm (700–2200 cm−1) | 2.0–14.0 μm |
Spectral Resolution | 0.5 cm−1 | 4 cm−1 |
Sampling Rate | 0.25 cm−1 | 3 cm−1 |
Interferometer | Michelson | Michelson |
Detector | HgCdTe | HgCdTe |
Dimensions (cm) | 40 × 36 × 27 | 33 × 46 × 32 |
Weight | 18 kg | 12.4 kg |
Power | 40 W (Average), 80 W (Max) | 18 W |
FOV (@ 1 m) | 1.7° (60 mm) | 4.8° (78 mm) |
Sample | |||||||
---|---|---|---|---|---|---|---|
Gravel | 303.25 (10.27) | 304.02 (10.39) | 318.36 (12.77) | 304.59 (10.48) | 0.952 | 0.001 | 0.953 |
Grass | 299.23 (9.65) | 299.81 (9.74) | 317.98 (12.71) | 304.02 (10.39) | 0.971 | −0.002 | 0.969 |
Sand | 304.02 (10.39) | 305.74 (10.66) | 322.38 (13.49) | 303.44 (10.30) | 0.913 | 0.004 | 0.917 |
Sample Description | Sample ID | Location (Field) | Date | Instruments | |
---|---|---|---|---|---|
Field | Lab | ||||
Black hardboard card (5 mm × 240 mm × 303 mm) | Card | Alconbury, UK | May-18 | EM27 (3) | Vertex (5) |
Polystyrene (40 mm × 160 mm × 150 mm) | Polystyrene | Alconbury, UK | May-18 | EM27 (3) | Vertex (4) |
Green grass (max. 200 mm height) | Grass_Alc | Alconbury, UK | May-18 | EM27 (3) | Vertex (5) |
Construction sand | Sand_Alc | Alconbury, UK | May-18 | EM27 (3) | Vertex (3) |
Distilled Water | DistilledWater | Alconbury, UK | May-18 | EM27 (3) | Vertex (4) |
Sandy gravel drive | Gravel_Gro | Grosseto, Italy | Jun-19 | Box (5), EM27 (1), D&P (3) | - |
Short dry grass | Grass_Gro | Grosseto, Italy | Jun-19 | Box (5), EM27 (1), D&P (3) | - |
Beach sand | Sand_Gro | Grosseto, Italy | Jun-19 | Box (5), EM27 (1–Grosseto, 3–Duxford) | Vertex (3) |
White PVC tarpaulin (630 gsm) | WhiteTarp | Duxford, UK (Box, EM27); Grosseto, Italy (EM27) | Jun-19 | Box (5), EM27 (1–Grosseto, 3–Duxford) | Vertex (3) |
Grey polyester tarpaulin (matte finish) | GreyTarp | Duxford, UK (Box, EM27); Grosseto, Italy (EM27; D&P) | Jun-19 | Box (5), EM27 (1–Grosseto, 3–Duxford), D&P (3) | Vertex (3) |
Black polyester tarpaulin (matte finish) | BlackTarp | Duxford, UK (Box, EM27); Grosseto, Italy (EM27) | Jun-19 | Box (5), EM27 (1–Grosseto, 3–Duxford) | Vertex (3) |
Gravel driveway (gravel pieces 10–40 mm) | Gravel_Dux | Duxford, UK | Jun-19 | Box (5), EM27 (3) | Vertex (6) |
Short green grass mixed with clover | Grass_Dux | Duxford, UK | Jun-19 | Box (5), EM27 (3) | - |
Homogeneous road tarmac | Tarmac | Duxford, UK | Jun-19 | Box (5), EM27 (3) | - |
Sample | Location | Surface Viewing BT (K) | Sky Viewing BT (K) |
---|---|---|---|
White Tarpaulin | Grosseto, IT | 300 | 250 |
Black Tarpaulin | Grosseto, IT | 330 | 250 |
Grey Tarpaulin | Grosseto, IT | 330 | 250 |
Grass | Duxford, UK | 300 | 240 |
Gravel | Duxford, UK | 310 | 240 |
Tarmac | Duxford, UK | 320 | 240 |
Sample | Calculated LST (°C) | ||||||
---|---|---|---|---|---|---|---|
TL-Box | D&P | EM27 (Grosseto) | EM27 (Duxford) | Lab | Median | IQR | |
WhiteTarp | 29.48 ± 0.38 | 28.00 ± 0.36 | 29.74 ± 0.45 | 29.00 ± 0.37 | 29.24 | 0.80 | |
GreyTarp | 63.44 ± 0.39 | 59.52 ± 0.37 | 60.91 ± 0.39 | 59.59 ± 0.38 | 59.52 ± 0.37 | 59.59 | 1.39 |
BlackTarp | 61.95 ± 0.38 | 60.09 ± 0.38 | 59.77 ± 0.37 | 59.46 ± 0.37 | 59.93 | 0.86 | |
Gravel_Dux | 28.72 ± 0.37 | 28.52 ± 0.36 | 28.20 ± 0.37 | 28.53 | 0.26 | ||
Grass_Dux | 39.23 ± 0.37 | 37.70 ± 0.36 | 38.49 | 0.79 | |||
Tarmac | 49.75 ± 0.37 | 49.15 ± 0.37 | 49.45 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langsdale, M.F.; Dowling, T.P.F.; Wooster, M.; Johnson, J.; Grosvenor, M.J.; de Jong, M.C.; Johnson, W.R.; Hook, S.J.; Rivera, G. Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing. Remote Sens. 2020, 12, 4127. https://doi.org/10.3390/rs12244127
Langsdale MF, Dowling TPF, Wooster M, Johnson J, Grosvenor MJ, de Jong MC, Johnson WR, Hook SJ, Rivera G. Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing. Remote Sensing. 2020; 12(24):4127. https://doi.org/10.3390/rs12244127
Chicago/Turabian StyleLangsdale, Mary F., Thomas P. F. Dowling, Martin Wooster, James Johnson, Mark J. Grosvenor, Mark C. de Jong, William R. Johnson, Simon J. Hook, and Gerardo Rivera. 2020. "Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing" Remote Sensing 12, no. 24: 4127. https://doi.org/10.3390/rs12244127
APA StyleLangsdale, M. F., Dowling, T. P. F., Wooster, M., Johnson, J., Grosvenor, M. J., de Jong, M. C., Johnson, W. R., Hook, S. J., & Rivera, G. (2020). Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing. Remote Sensing, 12(24), 4127. https://doi.org/10.3390/rs12244127