Editorial for the Special Issue “Remote Sensing Monitoring of Land Surface Temperature”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gerace, A.; Kleynhans, T.; Eon, R.; Montanaro, M. Towards an Operational, Split Window-Derived Surface Temperature Product for the Thermal Infrared Sensors Onboard Landsat 8 and 9. Remote Sens. 2020, 12, 224. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Ren, H.; Zheng, Y.; Lu, S.; Dong, J. Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset. Remote Sens. 2020, 12, 1023. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Bonafoni, S. Sensitivity Analysis and Validation of Daytime and Nighttime Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity Models. Remote Sens. 2020, 12, 2776. [Google Scholar] [CrossRef]
- Choi, Y.; Suh, M. Development of a Land Surface Temperature Retrieval Algorithm from GK2A/AMI. Remote Sens. 2020, 12, 3050. [Google Scholar] [CrossRef]
- Pinker, R.; Ma, Y.; Chen, W.; Hulley, G.; Borbas, E.; Islam, T.; Hain, C.; Cawse-Nicholson, K.; Hook, S.; Basara, J. Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites. Remote Sens. 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, Y.; Li, Y.; Xia, H.; Li, J. Reconstructing One Kilometer Resolution Daily Clear-Sky LST for China’s Landmass Using the BME Method. Remote Sens. 2019, 11, 2610. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C.; Im, J.; Cho, D.; Yokoya, N.; Xia, J.; Bechtel, B. Estimation of All-Weather 1 km MODIS Land Surface Temperature for Humid Summer Days. Remote Sens. 2020, 12, 1398. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Galve, J.M.; González-Piqueras, J.; López-Urrea, R.; Niclòs, R.; Calera, A. Monitoring 10-m LST from the Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem. Remote Sens. 2020, 12, 1453. [Google Scholar] [CrossRef]
- Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modelling High-Resolution Actual Evapotranspiration through Sentinel-2 and Sentinel-3 Data Fusion. Remote Sens. 2020, 12, 1433. [Google Scholar] [CrossRef]
- Njuki, S.; Mannaerts, C.; Su, Z. An Improved Approach for Downscaling Coarse-Resolution Thermal Data by Minimizing the Spatial Averaging Biases in Random Forest. Remote Sens. 2020, 12, 3507. [Google Scholar] [CrossRef]
- Naughton, J.; McDonald, W. Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Bhardwaj, A.; Singh, A.; Sam, L.; Shekhar, M.; Martín-Torres, F.; Zorzano, M. Quantifying the Congruence between Air and Land Surface Temperatures for Various Climatic and Elevation Zones of Western Himalaya. Remote Sens. 2019, 11, 2889. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Liu, C.; Xie, F.; Li, C.; Wang, J. Noise-sensitivity Analysis and Improvement of Automatic Retrieval of Temperature and Emissivity Using Spectral Smoothness. Remote Sens. 2020, 12, 2295. [Google Scholar] [CrossRef]
- Langsdale, M.; Dowling, T.; Wooster, M.; Johnson, J.; Grosvenor, M.; de Jong, M.; Johnson, W.; Hook, S.; Rivera, G. Inter-Comparison of Field- and Laboratory-Derived Surface Emissivities of Natural and Manmade Materials in Support of Land Surface Temperature (LST) Remote Sensing. Remote Sens. 2020, 12, 4127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, J.M.; Coll, C.; Niclòs, R. Editorial for the Special Issue “Remote Sensing Monitoring of Land Surface Temperature”. Remote Sens. 2021, 13, 1765. https://doi.org/10.3390/rs13091765
Sánchez JM, Coll C, Niclòs R. Editorial for the Special Issue “Remote Sensing Monitoring of Land Surface Temperature”. Remote Sensing. 2021; 13(9):1765. https://doi.org/10.3390/rs13091765
Chicago/Turabian StyleSánchez, Juan M., César Coll, and Raquel Niclòs. 2021. "Editorial for the Special Issue “Remote Sensing Monitoring of Land Surface Temperature”" Remote Sensing 13, no. 9: 1765. https://doi.org/10.3390/rs13091765
APA StyleSánchez, J. M., Coll, C., & Niclòs, R. (2021). Editorial for the Special Issue “Remote Sensing Monitoring of Land Surface Temperature”. Remote Sensing, 13(9), 1765. https://doi.org/10.3390/rs13091765