Mapping Dragon Fruit Croplands from Space Using Remote Sensing of Artificial Light at Night
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. NTL Remote Sensing Dataset
2.3. Official Statistics
2.4. Spatial Distribution of NTL Brightness
2.5. Temporal Series Changes of NTL Brightness
2.6. Relationship Analysis between NTL Brightness and Statistical Data
3. Results and Analyses
3.1. Spatial and Temporal Change Distribution of NTL Brightness
3.2. Result of Relationship Analysis between NTL Brightness and Statistical Data
4. Discussion
4.1. The Sources of NTLs
4.2. Discussion on Additional Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Croft, T.A. Nighttime Images of the Earth from Space. Sci. Am. 1978, 239, 86–101. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; He, C.; Wu, J.; Liu, Z.; Zhang, Q.; Sun, Z. Quantifying spatiotemporal patterns of urban impervious surfaces in China: An improved assessment using nighttime light data. Landsc. Urban Plan. 2014, 130, 36–49. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Xiao, P.; Wang, X.; Feng, X.; Zhang, X.; Yang, Y. Detecting China’s Urban Expansion Over the Past Three Decades Using Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4095–4106. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, D.; Chen, L.; Wang, H.; Guan, Q. A time series of urban extent in China using DSMP/OLS nighttime light data. PLoS ONE 2018, 13, e0198189. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Shu, S.; Liu, H.; Song, W.; Wu, J.; Wang, L.; Chen, Z. Object-based spatial cluster analysis of urban landscape pattern using nighttime light satellite images: A case study of China. Int. J. Geogr. Inf. Sci. 2014, 28, 2328–2355. [Google Scholar] [CrossRef]
- Liu, Z.; He, C.; Zhang, Q.; Huang, Q.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan. 2012, 106, 62–72. [Google Scholar] [CrossRef]
- Xin, X.; Liu, B.; Di, K.; Zhu, Z.; Zhao, Z.; Liu, J.; Yue, Z.; Zhang, G. Monitoring urban expansion using time series of night-time light data: A case study in Wuhan, China. Int. J. Remote Sens. 2017, 38, 6110–6128. [Google Scholar] [CrossRef]
- Wu, J.; Ma, L.; Li, W.; Peng, J.; Liu, H. Dynamics of Urban Density in China: Estimations Based on DMSP/OLS Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4266–4275. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H.; Song, W.; Yu, B.; Xiu, C. Normalization of time series DMSP-OLS nighttime light images for urban growth analysis with Pseudo Invariant Features. Landsc. Urban Plan. 2014, 128, 1–13. [Google Scholar] [CrossRef]
- Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. Population spatialization in China based on night-time imagery and land use data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Yu, B.; Shi, K.; Hu, Y.; Huang, C.; Chen, Z.; Wu, J. Poverty Evaluation Using NPP-VIIRS Nighttime Light Composite Data at the County Level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-Time Light Dynamics during the Iraqi Civil War. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the Syrian Crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Kohiyama, M.; Hayashi, H.; Maki, N.; Higashida, M.; Kroehl, H.W.; Elvidge, C.D.; Hobson, V.R. Early damaged area estimation system using DMSP-OLS night-time imagery. Int. J. Remote Sens. 2004, 25, 2015–2036. [Google Scholar] [CrossRef]
- Bertinelli, L.; Mohan, P.; Strobl, E. Hurricane damage risk assessment in the Caribbean: An analysis using synthetic hurricane events and nightlight imagery. Ecol. Econ. 2016, 124, 135–144. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.; Murthy, M.S.R.; Rajshekhar, G.; Elvidge, C.D.; Tuttle, B.T. Active forest fire monitoring in Uttaranchal State, India using multi-temporal DMSP-OLS and MODIS data. Int. J. Remote Sens. 2007, 28, 2123–2132. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.E.; Hsu, F.-C. Automatic Boat Identification System for VIIRS Low Light Imaging Data. Remote Sens. 2015, 7, 3020–3036. [Google Scholar] [CrossRef] [Green Version]
- Geronimo, R.C.; Franklin, E.C.; Brainard, R.E.; Elvidge, C.D.; Santos, M.D.; Venegas, R.; Mora, C. Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling. Remote Sens. 2018, 10, 1604. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Su, F.; Wang, W. Research on Oil and Gas Platform Extraction Technology Based on VIIRS Data. J. Geo Inf. Sci. 2017, 19, 398–406. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.E.; Hsu, F.-C.; Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 2015, 9, 14. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Shi, X. Mapping Global Fossil Fuel Combustion CO2Emissions at High Resolution by Integrating Nightlight, Population Density, and Traffic Network Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1674–1684. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Kumari, S.A.S.M.; Mannanyake, M.A.D.K.; Warnasooriya, W.M.S.; Munasinghe, M.A.L.R.; Kannangara, K.N. Induced flowering with artificial light for year round production of dragon fruit in Sri Lanka. Ann. Sri Lanka Dep. Agric. 2016, 18, 114–128. [Google Scholar]
- Binh Thuan Provincial People’s Committee. Natural Condition of Binh Thuan Province. Available online: https://www.binhthuan.gov.vn/1413/37383/63648/natural-condition (accessed on 22 July 2020).
- Bình Thuận Province. Available online: https://en.wikipedia.org/wiki/Bình_Thuận_Province (accessed on 20 June 2020).
- Trinh, X.H.; Mai, V.Q.; Nguyen, T.H.; Nguyen, T.B.N.; Ha, M.T.; Nguyen, V.L. Dragon Fruit Production in Vietnam: Achievements and Challenges; FFTC Agricultural Policy Platform: Taipei, Taiwan, 2018. [Google Scholar]
- Phan, T.T.H. The Dragon Fruit Export Challenge and Experiences in Vietnam. Available online: http://ap.fftc.agnet.org/ap_db.php?id=1038 (accessed on 24 June 2020).
- Pascua, L.T.; Gabriel, M.L.S.; Gabriel, M.; Pascua, M.E. Evaluation of light bulbs and the use of foliar fertilizer during off-season production of dragon fruit. Fruit Crops. 2013. Available online: https://www.haifa-group.com/sites/default/files/crop/Evaluation_of_light_bulbs_and_the_use_of_foliar_fertilizer_to_induce_flowering.pdf (accessed on 28 October 2020).
- Levin, N.; Duke, Y. High spatial resolution night-time light images for demographic and socio-economic studies. Remote Sens. Environ. 2012, 119, 1–10. [Google Scholar] [CrossRef]
- Miller, S.D.; Straka, W.; Mills, S.P.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.; Walther, A.; Heidinger, A.K.; Weiss, S.C. Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Binh Thuan Statistical Office. Statistical Yearbook of Binh Thuan. 2018. Available online: http://www.cucthongke.vn/ngtk/2018/index.htm (accessed on 20 June 2020).
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
County | Planted Area (ha) | Area Having Productions (ha) | Production (t) | Sum of Mean (nanowatts/cm2/sr) | Sum of STD (nanowatts/cm2/sr) |
---|---|---|---|---|---|
Phan Thiet | 513 | 463 | 9547.1 | 19,784 | 21,302 |
La Gi | 1300 | 1291 | 26,504.3 | 37,295 | 40,457 |
Tuy Phong | 400 | 314 | 4398 | 10,933 | 11,668 |
Bac Binh | 4060 | 2950 | 56,640 | 74,142 | 77,393 |
Ham Thuan Bac | 8970 | 8950 | 176,315 | 206,171 | 223,279 |
Ham Thuan Nam | 12,497 | 12,275 | 295,997.5 | 435,311 | 464,495 |
Tanh Linh | 125 | 122 | 2123 | 7692 | 8076 |
Duc Linh | 28.9 | 18.2 | 386 | 1601 | 1675 |
Ham Tan | 1377 | 887.8 | 20,053.6 | 23,759 | 25,664 |
Phu Quy | 1 | 0.6 | 0.5 | 160 | 151 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Shi, W.; Dong, P. Mapping Dragon Fruit Croplands from Space Using Remote Sensing of Artificial Light at Night. Remote Sens. 2020, 12, 4139. https://doi.org/10.3390/rs12244139
Wang R, Shi W, Dong P. Mapping Dragon Fruit Croplands from Space Using Remote Sensing of Artificial Light at Night. Remote Sensing. 2020; 12(24):4139. https://doi.org/10.3390/rs12244139
Chicago/Turabian StyleWang, Ruirui, Wei Shi, and Pinliang Dong. 2020. "Mapping Dragon Fruit Croplands from Space Using Remote Sensing of Artificial Light at Night" Remote Sensing 12, no. 24: 4139. https://doi.org/10.3390/rs12244139
APA StyleWang, R., Shi, W., & Dong, P. (2020). Mapping Dragon Fruit Croplands from Space Using Remote Sensing of Artificial Light at Night. Remote Sensing, 12(24), 4139. https://doi.org/10.3390/rs12244139