Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica
Abstract
:1. Introduction
1.1. Significance and Aim of the Study
1.2. Characteristics of the Study Area
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
3. Results
3.1. General Characteristics and Quantification of Landforms
3.2. Landform Characteristics
3.2.1. Glacial Depositional Landforms
Glaciomarginal Landforms
Ground Moraine Complex
3.2.2. Fluvial and Fluvioglacial Landforms
3.2.3. Littoral and Lacustrine Landforms
3.2.4. Bodies of Water
3.2.5. Snow Patches, Bedrock and other Surfaces
4. Discussion
4.1. BVLOS Data Acquisition and Interpretation
4.2. Glacial Dynamics
4.3. Flutings or Drumlins?
4.4. Ecology Glacier Foreland
4.5. Sphinx Glacier Foreland
4.6. Baranowski Glacier Foreland
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meredith, M.P.; King, J.C. Rapid climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 2005, 32, 19604. [Google Scholar] [CrossRef]
- Turner, J.; Barrand, N.E.; Bracegirdle, T.J.; Convey, P.; Hodgson, D.A.; Jarvis, M.; Jenkins, A.; Marshall, G.; Meredith, M.P.; Roscoe, H.; et al. Antarctic climate change and the environment: An update. Polar Rec. 2014, 50, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Fox, A.J.; Vaughan, D.G.; Ferrigno, J.G. Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century. Science 2005, 308, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lachlan-Cope, T.; Colwell, S.; Marshall, G.J. A positive trend in western Antarctic Peninsula precipitation over the last 50 years reflecting regional and Antarctic-wide atmospheric circulation changes. Ann. Glaciol. 2005, 41, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Znój, A.; Chwedorzewska, K.J.; Androsiuk, P.; Cuba-Diaz, M.; Giełwanowska, I.; Koc, J.; Korczak-Abshire, M.; Grzesiak, J.; Zmarz, A. Rapid environmental changes in the Western Antarctic Peninsula region due to climate change and human activity. Appl. Ecol. Environ. Res. 2017, 15, 525–539. [Google Scholar] [CrossRef]
- Simões, J.C.; Bremer, U.F.; Aquino, F.E.; Ferron, F.A. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Ann. Glaciol. 1999, 29, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Rückamp, M.; Braun, M.; Suckro, S.; Blindow, N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob. Planet. Chang. 2011, 79, 99–109. [Google Scholar] [CrossRef]
- Pudełko, R.; Angiel, P.J.; Potocki, M.; Jędrejek, A.J.; Kozak, M. Fluctuation of Glacial Retreat Rates in the Eastern Part of Warszawa Icefield, King George Island, Antarctica, 1979–2018. Remote Sens. 2018, 10, 892. [Google Scholar] [CrossRef] [Green Version]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Lee, J.R.; Raymond, B.; Bracegirdle, T.J.; Chadès, I.; Fuller, R.A.; Shaw, J.D.; Terauds, A. Climate change drives expansion of Antarctic ice-free habitat. Nature 2017, 547, 49–54. [Google Scholar] [CrossRef]
- Mobilność materii mineralnej na obszarach paraglacjalnych, Wyspa Króla Jerzego, Antarktyka Zachodnia (The mobility of mineral matter in paraglacial area, King George Island, Western Antarctica—in Polish). In Seria Geograficzna 74; Zwoliński, Z. (Ed.) Adam Mickiewicz University Press: Poznań, Poland, 2007; p. 266. [Google Scholar]
- Benn, D.; Evans, D.J.A. Glaciers and Glaciations; Routledge: London, UK, 2010; p. 816. [Google Scholar]
- Sziło, J.; Bialik, R.J. Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica). Geosciences 2018, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Kostrzewski, A.; Rachlewicz, G.; Zwolinski, Z. Geomorphological map of the western coast of Admiralty Bay, King George Island. In Relief, Quaternary Paleogeography and Changes of the Polar Environment; Maria Curie-Skłodowska University Press: Lublin, Poland, 1998; pp. 71–77. [Google Scholar]
- Kostrzewski, A.; Rachlewicz, G.; Zwolinski, Z. The relief of the Western coast of Admiralty Bay, King George Island, South Shetlands. Quaest. Geogr. 2002, 22, 43–58. [Google Scholar]
- Rachlewicz, G. Glacial relief and deposits of the western coast of Admiralty Bay, King George Island, South Shetland Islands. Pol. Polar Res. 1999, 20, 89–130. [Google Scholar]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Pętlicki, M.; Sziło, J.; MacDonell, S.; Vivero, S.; Bialik, R.J. Recent deceleration of the ice elevation change of Ecology Glacier (King George Island, Antarctica). Remote Sens. 2017, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Zmarz, A.; Rodzewicz, M.; Dąbski, M.; Karsznia, I.; Korczak-Abshire, M.; Chwedorzewska, K.J. Application of UAV BVLOS remote sensing data for multi-faceted analysis of Antarctic ecosystem. Remote Sens. Environ. 2018, 217, 375–388. [Google Scholar] [CrossRef]
- Funaki, M.; Higashino, S.I.; Sakanaka, S.; Iwata, N.; Nakamura, N.; Hirasawa, N.; Obara, N.; Kuwabara, M. Small unmanned aerial vehicles for aeromagnetic surveys and their flights in the South Shetland Islands, Antarctica. Polar Sci. 2014, 8, 342–356. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Sam, L.; Akanksha Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Chwedorzewska, K.J.; Bednarek, P.T. Genetic and epigenetic studies on populations of Deschampsia antarctica Desv. from contrasting environments at King George Island (Antarctic). Pol. Polar Res. 2011, 32, 15–26. [Google Scholar] [CrossRef]
- Sierakowski, K.; Korczak-Abshire, M.; Jadwiszczak, P. Changes in bird communities of Admiralty Bay, King George Island (West Antarctica): Insights from monitoring data (1977–1996). Pol. Polar Res. 2017, 38, 229–260. [Google Scholar]
- Birkenmajer, K. Geology of Admiralty Bay, King George Island (South Shetland Islands) -an outline. Pol. Polar Res. 1980, 1, 29–54. [Google Scholar]
- Birkenmajer, K. Raised marine features and glacial history in the vicinity of H. Arctowski Station, King George Island (South Shetland Islands, West Antarctica). Bull. Acad. Pol. Sci. Ser. Sci. Terre 1981, 29, 109–117. [Google Scholar]
- Knap, W.H.; Oerlemans, J.; Cadée, M. Climate Sensitivity of the ice cap of King George Island, South Shetland Islands, Antarctica. Ann. Glaciol. 1996, 23, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Główne cechy klimatu rejonu Polskiej Stacji Antarktycznej im. H. Arctowskiego (Antarktyka Zachodnia, Szetlandy Południowe, Wyspa Króla Jerzego). In The Maine Features of the Climate in the Region of the Polish Antarctic Station H. Arctowski (West Antarctica, South Shetland Islands, King George Island)–In Polish; Marsz, A.A.; Styszyńska, A. (Eds.) Wyższa Szkoła Morska: Gdynia, Poland, 2000; p. 264. [Google Scholar]
- Zwoliński, Z.; Kejna, M.; Rachlewicz, G.; Sobota, I.; Szpikowski, J. Solute and sedimentary fluxes on King George Island. In Source-to-Sink Fluxes in Undisturbed Cold Environments; Beylich, A.A., Dixon, J.C., Zwoliński, Z., Eds.; Cambridge University Press: Cambridge, UK, 2016; pp. 213–237. [Google Scholar]
- Kejna, M.; Araźny, A.; Sobota, I. Climatic change on King George Island in the years 1948–2011. Pol. Polar Res. 2013, 34, 213–235. [Google Scholar] [CrossRef]
- Birkenmajer, K. Retreat of Ecology Glacier, Admirality Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. Bull. Pol. Acad. Sci. Earth Sci. 2002, 50, 16–29. [Google Scholar]
- Angiel, P.J.; Dąbski, M. Lichenometric ages of the Little Ice Age moraines on King George Island and of the last volcanic activity on Penguin Island (West Antarctica). Geogr. Ann. 2012, 94, 395–412. [Google Scholar] [CrossRef]
- Oliva, M.; Navarro, F.; Hrbácek, F.; Hernández, A.; Nývlt, D.; Pereira, P.; Ruiz-Fernández, J.; Trigod, R. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci. Total Environ. 2016, 580, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Dutkiewicz, L. Preliminary results of investigations on some periglacial phenomena on King George Island, South Shetlands. Biul. Peryglac. Lodz 1982, 29, 13–23. [Google Scholar]
- López-Martínez, J.; Serrano, E.; Schmid, T.; Mink, S.; Linés, C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology 2012, 155–156, 62–79. [Google Scholar] [CrossRef]
- Robakiewicz, M.; Rakusa-Suszczewski, S. Application of 3D circulation model to Admiralty Bay, King George Island, Antarctica. Pol. Polar Res. 1999, 20, 43–58. [Google Scholar]
- Gonera, P.; Rachlewicz, G. Snow cover at Arctowski Station, King George Island, in winter 1991. Pol. Polar Res. 1997, 18, 3–14. [Google Scholar]
- Wierzbicki, G. Wiatry huraganowe w 2008 roku w Zatoce Admiralicji, Wyspa Króla Jerzego, Antarktyda Zachodnia (Storm winds in 2008 in Admiralty Bay, King George Island, West Antarctica–in Polish). Prz. Nauk. Inż. Kształt. Śr. 2009, 18, 47–55. (In Polish) [Google Scholar]
- Sobota, I.; Kejna, M.; Araźny, A. Short-term mass changes and retreat of the Ecology and Sphinx glacier system, King George Island, Antarctic Peninsula. Antarct. Sci. 2015, 27, 500–510. [Google Scholar] [CrossRef]
- Furmańczyk, K.; Marsz, A.A. Szetlandy Południowe–Wyspa Króla Jerzego–Zatoka Admiralicji, 1:25000; IGUG: Szczecin, Poland, 1980. [Google Scholar]
- Pudełko, R. Western Shore of Admiralty Bay, King George Island, South Shetlands, Orthophoto 1:10000 Scale; Department of Antarctic Biology: Warsaw, Poland, 2007. [Google Scholar]
- Pudełko, R. Two new topographic maps for sites of scientific interest on King George Island, West Antarctica. Pol. Polar Res. 2008, 29, 291–297. [Google Scholar]
- Goetzendorf-Grabowski, T.; Rodzewicz, M. Design of UAV for photogrammetric mission in Antarctic area. J. Aerosp. Eng. 2016, 231, 1660–1675. [Google Scholar] [CrossRef]
- Zmarz, A.; Rodzewicz, M.; Bosshard, M.; Moskopp, E.; Moe, K.; Schreiner, C.; Korczak-Abshire, M.; Karsznic, I.; Dąbski, M.; Chwedorzewska, K.J. Orthophotomap of the Western Shore of Admiralty Bay (King George Island, South Shetlands) developed on the basis of UAV obtained images. In XXXVII Sympozjum Polarne. Polar Change—Global Change; Małecki, J., Rymer, K., Buchwał, A., Kostrzewski, A., Eds.; Abstracts: Poznań, Poland, 2018; p. 145. [Google Scholar]
- Birkenmajer, K. New place names introduced to the area of Admiralty Bay, King George Island (South Shetland Islands, Antarctica). Stud. Geol. Pol. 1980, 64, 67–88. [Google Scholar]
- Chandler, B.M.P.; Evans, D.J.A.; Roberts, D.H. Characteristics of recessional moraines at a temperate glacier in SE Iceland: Insights into patterns, rates and drivers of glacier retreat. Quat. Sci. Rev. 2016, 135, 171–205. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.J.A.; Twigg, D.R. The active temperate glacial landsystem: A model based on Breiðamerkurjökull and Fjallsjökull, Iceland. Quat. Sci. Rev. 2002, 21, 2143–2177. [Google Scholar] [CrossRef]
- Evans, D.J.A.; Ewertowski, M.; Orton, C. Fláajökull (north lobe), Iceland: Active temperate piedmont lobe glacial landsystem. J. Maps 2015, 12, 777–789. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, P.; Piotrowski, J.A.; Larsen, N.K. Basal processes beneath an Arctic glacier and their geomorphic imprint after a surge, Elisebreen, Svalbard. Quat. Res. 2005, 64, 125–137. [Google Scholar] [CrossRef]
- Ely, J.C.; Graham, C.; Barr, I.D.; Rea, B.R.; Spagnolo, M.; Evans, J. Using UAV acquired photography and structure from motion techniques for studying glacier landforms: Application to the glacial flutes at Isfallsglaciären. Earth Surf. Process. Landf. 2017, 42, 877–888. [Google Scholar] [CrossRef]
- Ives, L.R.W.; Iverson, N.R. Genesis of glacial flutes inferred from observations at Múlajökull, Iceland. Geology 2019, 47, 387–390. [Google Scholar] [CrossRef]
- Convey, P.; Chown, S.L.; Clarke, A.; Barnes, D.K.A.; Bokhorst, S.; Cummings, V.; Ducklow, H.W.; Frati, F.; Green, T.G.A.; Gordon, S.; et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 2014, 84, 203–244. [Google Scholar] [CrossRef] [Green Version]
- Terauds, A.; Chown, S.L.; Morgan, F.; Peat, J.; Watts, H.; Keys, D.J.; Convey, P.; Bergstrom, D.M. Conservation biogeography of the Antarctic. Divers Distrib. 2012, 18, 726–741. [Google Scholar] [CrossRef] [Green Version]
- Calvińo-Cancela, M.; Martín-Herrero, J. Spectral discrimination of vegetation classes in ice-free areas of Antarctica. Remote Sens. 2016, 8, 856. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G. Near Real-Time orthorectification and mosaic of small UAV video flow for time-critical event response. IEEE Trans. Geosci. Remote 2009, 47, 739–747. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Flener, C.; Lotsari, E.; Alho, P.; Käyhkö, J. Comparison of empirical and theoretical remote sensing based bathymetry models in river environments. River Res. Appl. 2012, 28, 118–133. [Google Scholar] [CrossRef]
- D’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
- Grellier, S.; Kemp, J.; Janeau, J.J.; Florsch, N.; Ward, D.; Barot, S.; Podwojewski, P.; Lorentz, S.; Valentin, C. The indirect impact of encroaching trees on gully extension: A 64 year study in a sub-humid grassland of South Africa. Catena 2012, 98, 110–119. [Google Scholar] [CrossRef]
- Niethammer, U.; James, M.R.; Rothmund, S.; Travelletti, J.; Joswig, M. UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Eng. Geol. 2012, 128, 2–11. [Google Scholar] [CrossRef]
- Whitehead, K.; Moorman, B.J.; Hugenholtz, C.H. Brief communication: Low-cost, on-demand aerial photogrammetry for glaciological measurement. Cryosphere 2013, 7, 1879–1884. [Google Scholar] [CrossRef] [Green Version]
- De Haas, T.; Ventra, D.; Carbonneau, P.E.; Kleinhans, M.G. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 2014, 217, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Silva, O.L.; Bezerra, F.H.R.; Maia, R.P.; Cazarin, C.L. Karst landforms revealed at various scales using LiDAR and UAV in semi-arid Brazil: Consideration on karstification processes and methodological constraints. Geomorphology 2017, 295, 611–630. [Google Scholar] [CrossRef]
- Kasprzak, M.; Jancewic, K.; Michniewicz, A. UAV and SfM in Detailed Geomorphological Mapping of Granite Tors: An Example of Starościńskie Skały (Sudetes, SW Poland). Pure Appl. Geophys. 2018, 175, 3193–3207. [Google Scholar] [CrossRef] [Green Version]
- Osmanoğlu, B.; Braun, B.; Hock, R.; Navarro, F.J. Surface velocity and ice discharge of the ice cap on King George Island, Antarctica. Ann. Glaciol. 2013, 54, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Budd, W.F. A first simple model of periodically self-surging glaciers. J. Glaciol. 1975, 14, 3–21. [Google Scholar] [CrossRef]
- Clarke, G.K.C. Fast glacier flow, ice streams, surging and tidewater glaciers. J. Geophys. Res. Solid Earth 1987, 92, 9023–9036. [Google Scholar] [CrossRef]
- Hart, J.K. Identifying fast ice flow from landform assemblages in the geological record: A discussion. Ann. Glaciol. 1999, 28, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Rachlewicz, G. Zmienność facjalna osadów przedpola lodowca Ekologii—Wyspa Króla Jerzego—Szetlandy Południowe. In Geneza, Litologia i Stratygrafia Osadów Czwartorzędowych, 2; Kostrzewski, A., Ed.; Adam Mickiewicz University: Poznań, Poland, 1996; Volume 57, pp. 249–262. (In Polish) [Google Scholar]
- Clarke, G.K.C.; Collins, S.G.; Thomson, D.E. Flow, thermal structure, and subglacial conditions of a surge-type glacier. Can. J. Earth Sci. 1984, 21, 232–240. [Google Scholar] [CrossRef]
- Kamb, B. Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion. J. Geophys. Res. 1991, 96, 16585–16595. [Google Scholar] [CrossRef] [Green Version]
- Tulaczyk, S.; Kamb, B.; Engelhardt, H.F. Basal mechanics of Ice Stream B, West Antarctica: 1. Till mechanics. J. Geophys. Res. 2000, 105, 463–481. [Google Scholar] [CrossRef] [Green Version]
- Benjumea, B.; Macheret, Y.; Navarro, F.; Teixidó, T. Estimation of water content in a temperate glacier from radar and seismic sounding data. Ann. Glaciol. 2003, 37, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Young Kim, K.; Lee, J.; Ho Hong, M.; Kuk Hong, J.; Keun Jin, Y.; Shon, H. Seismic and radar investigations of Fourcade Glacier on King George Island, Antarctica. Polar Res. 2010, 29, 298–310. [Google Scholar] [CrossRef]
- Meier, M.F.; Post, A. Fast tidewater glaciers. JGR Solid Earth 1987, 92, 9051–9058. [Google Scholar] [CrossRef]
- Evans, D.J.A.; Twigg, D.R.; Rea, B.R.; Orton, C. Surging glacier landsystem of Tungnaarjökull, Iceland. J. Maps 2009, 5, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Rea, B.R.; Evans, D.J.A. An assessment of surge-induced crevassing and the formation of crevasse squeeze ridges. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Dyson, J.L. Ice-ridged moraines and their relation to glaciers. Am. J. Sci. 1952, 250, 204–216. [Google Scholar] [CrossRef]
- Todtmann, E.M. In Gletscherrückzugsgebiet des Vatna-Jökull auf Island. Neues Jahrbuch Fur Geologie Und Palaontologie-Abhandlungen 1952, 9, 401–411. [Google Scholar]
- Boulton, G.S. The origin of glacially-fluted surfaces: Observations and theory. J. Glaciol. 1976, 17, 287–309. [Google Scholar] [CrossRef] [Green Version]
- Rose, J. Drumlins as part of a glacier bedform continuum. In Drumlin Symposium; Menzies, J., Rose, J., Eds.; Balkena: Rotterdam, The Netherlands, 1987; pp. 103–116. [Google Scholar]
- Gordon, J.E.; Whalley, W.B.; Gellatly, A.F.; Vere, D.M. The formation of glacial flutes: Assessment of models with evidence from Lyngsdalen, north Norway. Quat. Sci. Rev. 1992, 11, 709–731. [Google Scholar] [CrossRef]
- Clark, C.D.; Hughes, A.L.C.; Greenwood, S.L.; Spagnolo, M.; Ng, F.S.L. Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws. Quat. Sci. Rev. 2009, 28, 677–692. [Google Scholar] [CrossRef] [Green Version]
- Khim, B.-K.; Yoon, H.I.; Kang, C.Y.; Bahk, J.J. Unstable climate oscillations during the Late Holocene in the Eastern Bransfield Basin, Antarctic Peninsula. Quat. Res. 2002, 58, 234–245. [Google Scholar] [CrossRef]
- Benn, D. Subglacial and subaqueous processes near a glacier grounding line: Sedimentological evidence from a former ice-dammed lake, Achnasheen Scotland. Boreas 1996, 25, 23–36. [Google Scholar] [CrossRef]
- Krüger, J. Origin, chronology and climatological significance of annualmoraine ridges at Mýrdalsjökull, Iceland. Holocene 1995, 5, 420–427. [Google Scholar] [CrossRef]
UAV | PW-ZOOM |
---|---|
Number of flights | 3 |
Total time of flight | Flight nr 1: 2 h 50 min 19 s |
Flight nr 2: 2 h 12 min 35 s | |
Flight nr 3: 1 h 58 min 28 s | |
Camera set | Canon 700D with 35 mm lens (RGB) |
Number of images | Flight nr 1: 3123 (RAW) |
Flight nr 2: 2377 (RAW) | |
Flight nr 3: 2178 (RAW) | |
Distance | Flight nr 1: 296 km |
Flight nr 2: 227 km | |
Flight nr 3: 197 km | |
Flight altitude | 500 m a.s.l. |
Cruise speed | Flight nr 1: 104.5 km/h |
Flight nr 2: 102.7 km/h | |
Flight nr 3: 99.9 km/h | |
Ground Sampling Distance | 0.06 m |
Length (m) | Elongation | Max. Elongation | |
---|---|---|---|
E1 | 36.5 | 1.99 | 3.32 |
E2 | 69.8 | 3.81 | 4.12 |
S1 | 160.0 | 6.99 | 5.43 |
S2 | 249.3 | 9.21 | 6.29 |
S3 | 279.2 | 24.81 | 6.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbski, M.; Zmarz, A.; Rodzewicz, M.; Korczak-Abshire, M.; Karsznia, I.; Lach, K.; Rachlewicz, G.; Chwedorzewska, K. Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica. Remote Sens. 2020, 12, 630. https://doi.org/10.3390/rs12040630
Dąbski M, Zmarz A, Rodzewicz M, Korczak-Abshire M, Karsznia I, Lach K, Rachlewicz G, Chwedorzewska K. Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica. Remote Sensing. 2020; 12(4):630. https://doi.org/10.3390/rs12040630
Chicago/Turabian StyleDąbski, Maciej, Anna Zmarz, Mirosław Rodzewicz, Małgorzata Korczak-Abshire, Izabela Karsznia, Katarzyna Lach, Grzegorz Rachlewicz, and Katarzyna Chwedorzewska. 2020. "Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica" Remote Sensing 12, no. 4: 630. https://doi.org/10.3390/rs12040630
APA StyleDąbski, M., Zmarz, A., Rodzewicz, M., Korczak-Abshire, M., Karsznia, I., Lach, K., Rachlewicz, G., & Chwedorzewska, K. (2020). Mapping Glacier Forelands Based on UAV BVLOS Operation in Antarctica. Remote Sensing, 12(4), 630. https://doi.org/10.3390/rs12040630