A New Model for Transfer Learning-Based Mapping of Burn Severity
Abstract
:1. Introduction
2. Methodology
2.1. Domain Adaptation
2.2. Burn Severity Mapping
2.3. Performance Validation and Comparisons
3. Data and Processing
3.1. Study Area
3.2. Remotely Sensed Data
3.3. Field Survey Data
3.4. Cross-Validation Setting
4. Results
4.1. Parameters Analysis of SSTCA
4.2. Visual Analysis of Projected Features
4.3. Mapping Results of Burn Severity
4.4. Cross-Validation in Different Scenarios
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Lim, S.-S.; Yang, H.I.; Lee, K.-S.; Park, S.-I.; Kwak, J.-H.; Kim, H.-Y.; Oh, S.-W.; Choi, W.-J. Co-elevated CO2 and temperature and changed water availability do not change litter quantity and quality of pine and oak. Agric. For. Meteorol. 2020, 280, 107795. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, W.; Li, S.; Zeng, Y. Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecol. Model. 2017, 348, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Quintano, C.; Fernandez-Manso, A.; Roberts, D.A. Burn severity mapping from landsat mesma fraction images and land surface temperature. Remote Sens. Environ. 2017, 190, 83–95. [Google Scholar] [CrossRef]
- Chen, G.; Metz, M.R.; Rizzo, D.M.; Dillon, W.W.; Meentemeyer, R.K. Object-based assessment of burn severity in diseased forests using high-spatial and high-spectral resolution master airborne imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Riaño, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate the postfire spectral response to burn severity. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Key, C.H.; Benson, N.C. Landscape assessment (la): Sampling and analysis methods. In Rocky Mountain Research Station, USDA; Forest Service: Fort Collins, CO, USA, 2006; pp. LA-1–LA-51. [Google Scholar]
- Zheng, Z.; Zeng, Y.; Li, S.; Huang, W. Mapping burn severity of forest fires in small sample size scenarios. Forests 2018, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned area detection and burn severity assessment of a heathland fire in belgium using airborne imaging spectroscopy (apex). Remote Sens. 2014, 6, 1803–1826. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Chen, G.; De Santis, A.; Roberts, D.A.; Zhou, Y.; Meentemeyer, R.K. A disturbance weighting analysis model (dwam) for mapping wildfire burn severity in the presence of forest disease. Remote Sens. Environ. 2019, 221, 108–121. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple endmember spectral mixture analysis (mesma) to map burn severity levels from landsat images in mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E.; Vaughan, P.J. Short-term assessment of burn severity using the inversion of prospect and geosail models. Remote Sens. Environ. 2009, 113, 126–136. [Google Scholar] [CrossRef]
- De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sens. Environ. 2007, 108, 422–435. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior alaska using landsat tm and etm+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Hook, S.; Hulley, G. An alternative spectral index for rapid fire severity assessments. Remote Sens. Environ. 2012, 123, 72–80. [Google Scholar] [CrossRef]
- van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of aviris and landsat etm+ detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397–408. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. The Normalized Burn Ratio (nbr): A Landsat tm Radiometric Measure of Burn Severity. Available online: http://www.nrmsc.usgs.gov/research/ndbr.htm (accessed on 22 May 2015).
- Garcia, M.L.; Caselles, V. Mapping burns and natural reforestation using thematic mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Int. J. Wildland Fire 2005, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Geosci. Remote Sens. Lett. 2006, 3, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using nbr (normalized burn ratio) and ndvi (normalized difference vegetation index) derived from landsat tm/etm images. Int. J. Remote Sens. 2008, 29, 1053–1073. [Google Scholar] [CrossRef]
- Zheng, Z. Study on the risk, spread and assessment of forest fire based on the model and remote sensing. Acta Geod. Cartogr. Sin. 2019, 48, 133. [Google Scholar]
- Soverel, N.O.; Perrakis, D.D.B.; Coops, N.C. Estimating burn severity from landsat dnbr and rdnbr indices across western canada. Remote Sens. Environ. 2010, 114, 1896–1909. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta normalized burn ratio (dnbr). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Parks, S.; Dillon, G.; Miller, C. A new metric for quantifying burn severity: The relativized burn ratio. Remote Sens. 2014, 6, 1827–1844. [Google Scholar] [CrossRef] [Green Version]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L. Land surface temperature as potential indicator of burn severity in forest mediterranean ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 1–12. [Google Scholar] [CrossRef]
- Fernández-García, V.; Santamarta, M.; Fernández-Manso, A.; Quintano, C.; Marcos, E.; Calvo, L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using landsat imagery. Remote Sens. Environ. 2018, 206, 205–217. [Google Scholar] [CrossRef]
- Zheng, Z.; Zeng, Y.; Li, S.; Huang, W. A new burn severity index based on land surface temperature and enhanced vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 84–94. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Van De Kerchove, R.; Goossens, R. Assessment of post-fire changes in land surface temperature and surface albedo, and their relation with fire–burn severity using multitemporal modis imagery. Int. J. Wildland Fire 2012, 21, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Marcos, E.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Valbuena, L.; Tárrega, R.; Luis-Calabuig, E.; Calvo, L. Evaluation of composite burn index and land surface temperature for assessing soil burn severity in mediterranean fire-prone pine ecosystems. Forests 2018, 9, 494. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in chaparral ecosystems (southern california) using modis/aster (master) airborne simulator data. Remote Sens. 2011, 3, 2403–2419. [Google Scholar] [CrossRef] [Green Version]
- Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.; Llovería, R.; García-Martín, A. Analysis of the relationship between land surface temperature and wildfire severity in a series of landsat images. Remote Sens. 2014, 6, 6136–6162. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Metz, M.R.; Rizzo, D.M.; Meentemeyer, R.K. Mapping burn severity in a disease-impacted forest landscape using landsat and master imagery. Int. J. Appl. Earth Obs. Geoinf. 2015, 40, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, O.; Quintano, C.; Fernández-Manso, A. Combining spectral mixture analysis and object-based classification for fire severity mapping. For. Syst. 2009, 18, 296–313. [Google Scholar] [CrossRef]
- Soverel, N.O.; Coops, N.C.; Perrakis, D.D.B.; Daniels, L.D.; Gergel, S.E. The transferability of a dnbr-derived model to predict burn severity across 10 wildland fires in western canada. Int. J. Wildland Fire 2011, 20, 518–531. [Google Scholar] [CrossRef]
- Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 2011, 22, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Matasci, G.; Volpi, M.; Kanevski, M.; Bruzzone, L.; Tuia, D. Semisupervised transfer component analysis for domain adaptation in remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3550–3564. [Google Scholar] [CrossRef]
- Yan, K.; Kou, L.; Zhang, D. Learning domain-invariant subspace using domain features and independence maximization. IEEE Trans. Cybern. 2018, 48, 288–299. [Google Scholar] [CrossRef]
- Yan, K. A Domain Adaptation Toolbox. Available online: https://www.github.com/viggin/domain-adaptation-toolbox (accessed on 9 December 2019).
- Cherkassky, V.; Ma, Y. Practical selection of svm parameters and noise estimation for svm regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. Statistical Learning Theory; Wiley: New York, NY, USA, 1998; Volume 2. [Google Scholar]
- Zhu, Z.; Key, C.; Ohlen, D.; Benson, N.C. Evaluate sensitivities of burn-severity mapping algorithms for different ecosystems and fire histories in the united states. In Final Report to the Joint Fire Science Program; JFSP 01-1-4-12; Joint Fire Science Program: Boise, IA, USA, 2006. [Google Scholar]
- USGS. Earthexplorer. Available online: http://earthexplorer.usgs.gov/ (accessed on 20 December 2013).
- Srivastava, P.K.; Majumdar, T.J.; Bhattacharya, A.K. Surface temperature estimation in singhbhum shear zone of india using landsat-7 etm+ thermal infrared data. Adv. Space Res. 2009, 43, 1563–1574. [Google Scholar] [CrossRef]
- NASA. Level 1 and Atmosphere Archive and Distribution System (LAADS). Available online: http://earthexplorer.usgs.gov/ (accessed on 20 October 2014).
- Zhou, J.; Li, J.; Zhang, L.; Hu, D.; Zhan, W. Intercomparison of methods for estimating land surface temperature from a landsat-5 tm image in an arid region with low water vapour in the atmosphere. Int. J. Remote Sens. 2012, 33, 2582–2602. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X. Validation of the generalized single-channel algorithm using landsat 8 imagery and surfrad ground measurements. Remote Sens. Lett. 2016, 7, 810–816. [Google Scholar] [CrossRef]
Fire Name | Bear | Jasper | Mule | Pw03-Wolf |
---|---|---|---|---|
Regional Eco-types | Southwest | Central | Northern Rockies | California |
Alarmed Date | 27 June 2002 | 24 August 2000 | 11 July 2002 | 3 October 2002 and 11 July 2002 |
Regional Climate | Highland (alpine) | Semiarid Steppe | Highland (alpine) | Mediterranean |
Annual Precipitation | <300 mm | 440 to 673 mm | 750 to 1150 mm | 804 to 1722 mm |
Elevations Range | 1700 to 2740 m | 1050 to 2207 m | 1981 to 3353 m | 657 to 3997 m |
Sensors | TM and MODIS | TM/ETM+ and MODIS | TM and MODIS | TM/ETM+ and MODIS |
Pre-fire Image | 13 June 2002 | 1 May 2000 | 21 September 2001 | 18 October 2001 |
Post-fire Image | 31 May 2003 | 31 May 2002 | 27 September 2003 | 16 October 2003 |
CBI Collection Date | 28–30 May 2003 | 14–26 May 2002 | 8–11 September 2003 | 15 August–30 October 2003 |
Burned Area Size | 18.62 km2 | 336.37 km2 | 11.86 km2 | 13.61 km2 |
Scenarios | Target Domain Area | Source Domain Areas |
---|---|---|
Scenario 1 | Bear Fire | Jasper, Mule, and PW03-Wolf Fires |
Scenario 2 | Jasper Fire | Bear, Mule, and PW03-Wolf Fires |
Scenario 3 | Mule Fire | Bear, Jasper, and PW03-Wolf Fires |
Scenario 4 | Pw03-Wolf Fire | Bear, Jasper, and Mule Fires |
Predictor Variable | Empirical Fitting’s Parameters | Accuracy | Model | Parameters | Accuracy | |||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | c | R | RMSE | C | ε | R | RMSE | ||
∆NDVI | 0.5963 | 4.1368 | 1.0724 | 0.63 | 1.1187 | SVR | 97.0059 | 0.2176 | 0.76 | 1.7658 |
∆LST | 2.3073 | 2.5626 | 1.4793 | 0.69 | 0.7362 | SSTCA-SVR | 55.7152 | 0.0412 | 0.80 | 0.6229 |
∆NBR | −1.3456 | 3.5138 | 0.9056 | 0.73 | 0.9732 | N.P.F. = 10 | λ = 0.1 |
Models | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|---|
∆NDVI | a | 0.5963 | −4.1698 | −2.825 | −1.5803 |
b | 4.1368 | 5.789 | 4.445 | 4.6692 | |
c | 1.0724 | 1.0724 | 1.4011 | 1.4085 | |
R | 0.63 | 0.62 | 0.62 | 0.75 | |
RMSE | 1.1187 | 0.6316 | 0.8683 | 0.7422 | |
∆LST | a | 2.3073 | −3.8144 | 1.7842 | 4.2049 |
b | 2.5626 | 5.6159 | 3.356 | 2.5752 | |
c | 1.4793 | 1.2141 | 1.5525 | 1.3911 | |
R | 0.69 | 0.58 | 0.58 | 0.38 | |
RMSE | 0.7362 | 0.8814 | 0.9763 | 0.7733 | |
∆NBR | a | −1.3456 | −3.4368 | −3.2525 | −2.5958 |
b | 3.5138 | 5.0849 | 4.5846 | 4.1274 | |
c | 0.9056 | 0.8436 | 1.1096 | 1.1155 | |
R | 0.73 | 0.69 | 0.71 | 0.74 | |
RMSE | 0.9732 | 0.5123 | 0.8282 | 0.5917 | |
SVR | C | 97.0059 | 97.0059 | 97.0059 | 97.0059 |
ε | 0.2176 | 0.125 | 0.0412 | 0.2176 | |
R | 0.76 | 0.76 | 0.61 | 0.60 | |
RMSE | 1.7658 | 1.9093 | 1.1464 | 2.0055 | |
SSTCA-SVR | N.P.F. | 10 | 5 | 7 | 8 |
λ | 0.1 | 0.9 | 0.5 | 0.1 | |
C | 55.7152 | 97.0059 | 55.7152 | 10.5561 | |
ε | 0.0412 | 0.0136 | 0.0412 | 0.2176 | |
R | 0.80 | 0.76 | 0.77 | 0.72 | |
RMSE | 0.6229 | 0.4833 | 0.6659 | 0.5824 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, J.; Shan, B.; He, Y.; Liao, C.; Gao, Y.; Yang, S. A New Model for Transfer Learning-Based Mapping of Burn Severity. Remote Sens. 2020, 12, 708. https://doi.org/10.3390/rs12040708
Zheng Z, Wang J, Shan B, He Y, Liao C, Gao Y, Yang S. A New Model for Transfer Learning-Based Mapping of Burn Severity. Remote Sensing. 2020; 12(4):708. https://doi.org/10.3390/rs12040708
Chicago/Turabian StyleZheng, Zhong, Jinfei Wang, Bo Shan, Yongjun He, Chunhua Liao, Yanghua Gao, and Shiqi Yang. 2020. "A New Model for Transfer Learning-Based Mapping of Burn Severity" Remote Sensing 12, no. 4: 708. https://doi.org/10.3390/rs12040708
APA StyleZheng, Z., Wang, J., Shan, B., He, Y., Liao, C., Gao, Y., & Yang, S. (2020). A New Model for Transfer Learning-Based Mapping of Burn Severity. Remote Sensing, 12(4), 708. https://doi.org/10.3390/rs12040708