Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era
Abstract
:1. Introduction
2. Experiment Design
2.1. The Regional Modeling System
2.2. Emissions Preparation
2.3. Experiment Set-Up
3. Results
3.1. Fire Emissions During 1997–2016
3.2. Evaluation of CWRF and CMAQ
3.3. Fire Contribution to Air Quality
3.3.1. Average Air Quality
3.3.2. Extreme Air Quality
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western, U.S. forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Rogers, B.M.; Neilson, R.P.; Drapek, R.; Lenihan, J.M.; Wells, J.R.; Bachelet, D.; Law, B.E. Impacts of climate change on fire regimes and carbon stocks of the U.S. Pacific Northwest. J. Geophys. Res. Biogeosci. 2011, 116, G03037. [Google Scholar] [CrossRef] [Green Version]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Kochi, I.; Donovan, G.H.; Champ, P.A.; Loomis, J.B. The economic cost of adverse health effects from wildfire-smoke exposure: A review. Int. J. Wildland Fire 2010, 19, 803–817. [Google Scholar] [CrossRef]
- Haikerwal, A.; Akram, M.; Del Monaco, A.; Smith, K.; Sim, M.R.; Meyer, M.; Tonkin, A.M.; Abramson, M.J.; Dennekamp, M. Impact of fine particulate matter (PM2.5) exposure during wildfires on cardiovascular health outcomes. J. Am. Heart Assoc. 2015, 4, e001653. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.; Pereira, G.; Uhl, S.A.; Bravo, M.A.; Bell, M.L. A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ. Res. 2015, 136, 120–132. [Google Scholar] [CrossRef] [Green Version]
- Colarco, P.R.; Schoeberl, M.R.; Doddridge, B.G.; Marufu, L.T.; Torres, O.; Welton, E.J. Transport of smoke from Canadian forest fires to the surface near Washington, DC: Injection height, entrainment, and optical properties. J. Geophys. Res. Atmos. 2004, 109, D06203. [Google Scholar] [CrossRef]
- DeBell, L.J.; Talbot, R.W.; Dibb, J.E.; Munger, J.W.; Fischer, E.V.; Frolking, S.E. A major regional air pollution event in the northeastern United States caused by extensive forest fires in Quebec, Canada. J. Geophys. Res. Atmos. 2004, 109, D19305. [Google Scholar] [CrossRef] [Green Version]
- Sapkota, A.; Symons, J.M.; Kleissl, J.; Wang, L.; Parlange, M.B.; Ondov, J.; Breysse, P.N.; Diette, G.B.; Eggleston, P.A.; Buckley, T.J. Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City. Environ. Sci. Technol. 2005, 39, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, R. Estimating the impact of the 2004 Alaskan forest fires on episodic particulate matter pollution over the eastern United States through assimilation of satellite-derived aerosol optical depths in a regional air quality model. J. Geophys. Res. Atmos. 2008, 113, D17302. [Google Scholar] [CrossRef] [Green Version]
- Dreessen, J.; Sullivan, J.; Delgado, R. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on 9–12 June 2015. J. Air Waste Manag. Assoc. 2016, 66, 842–862. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, D.; Bertschi, I.; Jaegle, L.; Novelli, P.; Reid, J.S.; Tanimoto, H.; Vingarzan, R.; Westphal, D.L. Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys. Res. Lett. 2004, 31, L16106. [Google Scholar] [CrossRef] [Green Version]
- Junquera, V.; Russell, M.M.; Vizuete, W.; Kimura, Y.; Allen, D. Wildfires in eastern Texas in August and September 2000: Emissions, aircraft measurements, and impact on photochemistry. Atmos. Environ. 2005, 39, 4983–4996. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.L. Ozone production from wildfires: A critical review. Atmos. Environ. 2012, 51, 1–10. [Google Scholar] [CrossRef]
- Singh, H.B.; Cai, C.; Kaduwela, A.; Weinheimer, A.; Wisthaler, A. Interactions of fire emissions and urban pollution over California: Ozone formation and air quality simulations. Atmos. Environ. 2012, 56, 45–51. [Google Scholar] [CrossRef]
- Jaffe, D.A.; Wigder, N.; Downey, N.; Pfister, G.; Boynard, A.; Reid, S.B. Impact of wildfires on ozone exceptional events in the western US. Environ. Sci. Technol. 2013, 47, 11065–11072. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Yue, X.; Zhang, J.C.; Jaffe, D.A.; Stohl, A.; Zhao, Y.H.; Shao, J.Y. Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States. Atmos. Chem. Phys. 2016, 16, 14687–14702. [Google Scholar] [CrossRef] [Green Version]
- Spracklen, D.V.; Mickley, L.J.; Logan, J.A.; Hudman, R.C.; Yevich, R.; Flannigan, M.D.; Westerling, A.L. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. Atmos. 2009, 114, D20301. [Google Scholar] [CrossRef]
- Hawbaker, T.J.; Zhu, Z. Projected Future Wildland Fires and Emissions for the Western United States, Chapter 8 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States. US Geological Survey Professional Paper 1797. 2012. Available online: https://pubs.usgs.gov/pp/1797/pdf/pp1797_Chapter8.pdf (accessed on 7 March 2020).
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.J.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kielh, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Karcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Creamean, J.M.; Suski, K.J.; Rosenfeld, D.; Cazorla, A.; DeMott, P.J.; Sullivan, R.C.; White, A.B.; Ralph, F.M.; Minnis, P.; Comstock, J.M.; et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science 2013, 339, 1572–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Z.; Yu, H.; Chin, M. The role of aerosol-cloud-radiation interactions in regional air quality—A NU-WRF study over the United States. Atmosphere 2015, 6, 1045–1068. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.; Yu, H.; Chin, M. Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions. Atmos. Environ. 2016, 125, 48–60. [Google Scholar] [CrossRef]
- Mueller, S.F.; Mallard, J.W. Contributions of natural emissions to ozone and PM2.5 as simulated by the Community Multiscale Air Quality (CMAQ) model. Environ. Sci. Technol. 2011, 45, 4817–4823. [Google Scholar] [CrossRef]
- Yang, E.S.; Christopher, S.A.; Kondragunta, S.; Zhang, X.Y. Use of hourly Geostationary Operational Environmental Satellite (GOES) fire emissions in a Community Multiscale Air Quality (CMAQ) model for improving surface particulate matter predictions. J. Geophys. Res. Atmos. 2011, 116, D04303. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Menendez, F.; Hu, Y.T.; Odman, M.T. Simulating smoke transport from wildland fires with a regional-scale air quality model: Sensitivity to spatiotemporal allocation of fire emissions. Sci. Total Environ. 2014, 493, 544–553. [Google Scholar] [CrossRef]
- Herron-Thorpe, F.L.; Mount, G.H.; Emmons, L.K.; Lamb, B.K.; Jaffe, D.A.; Wigder, N.L.; Chung, S.H.; Zhang, R.; Woelfle, M.D.; Vaughan, J.K. Air quality simulations of wildfires in the Pacific Northwest evaluated with surface and satellite observations during the summers of 2007 and 2008. Atmos. Chem. Phys. 2014, 14, 12533–12551. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475+STR. In Citeseer; NCAR: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Liang, X.-Z.; Xu, M.; Yuan, X.; Ling, T.; Choi, H.I.; Zhang, F.; Chen, L.; Liu, S.; Su, S.; Qiao, F.; et al. Regional climate-weather research and forecasting model. Bull. Am. Meteorol. Soc. 2012, 93, 1363–1387. [Google Scholar] [CrossRef]
- Ling, T.-J.; Xu, M.; Liang, X.-Z.; Wang, J.X.L.; Noh, Y. A multi-level ocean mixed layer model resolving the diurnal cycle: Development and validation. J. Adv. Model. Earth Syst. 2015, 7, 1680–1692. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Liang, X.-Z. Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophys. Res. Lett. 2011, 38, L02706. [Google Scholar] [CrossRef]
- Qiao, F.; Liang, X.-Z. Effects of cumulus parameterizations on predictions of summer flood in the Central United States. Clim. Dyn. 2015, 45, 727–744. [Google Scholar] [CrossRef]
- Qiao, F.; Liang, X.-Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the United States coastal oceans. J. Adv. Model. Earth Syst. 2016, 8, 764–785. [Google Scholar] [CrossRef]
- Qiao, F.; Liang, X.-Z. Effects of cumulus parameterization closures on simulations of summer precipitation over the continental United States. Clim. Dyn. 2017, 49, 225–247. [Google Scholar] [CrossRef]
- Chen, L.-G.; Liang, X.-Z.; DeWitt, D.; Samel, A.N.; Wang, J.X.L. Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system. Clim. Dyn. 2016, 46, 879–896. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Wang, J.; Liang, X.-Z.; Morris, V. A hybrid approach to improving the skills of seasonal climate outlook at the regional scale. Clim. Dyn. 2016, 46, 483–494. [Google Scholar] [CrossRef]
- Houyoux, M.R.; Vukovich, J.M.; Coats, C.J.J.; Wheeler, N.J.M. Emission inventory development and processing for the seasonal model for regional air quality (SMRAQ) project. J. Geophys. Res. 2000, 105, 9079–9090. [Google Scholar] [CrossRef]
- Briggs, G.A. Chimney plumes in neutral and stable surroundings (Discussion). Atmos. Environ. 1972, 6, 507–510. [Google Scholar] [CrossRef]
- EPA. CMAQ (Version 5.2) Scientific Document. Zenodo 2017, 234. [Google Scholar] [CrossRef]
- Otte, T.L.; Pleim, J.E. The meterology-chemistry interface preocessor (MCIP) for the CMAQ modeling system: Updates through MCIPv3.4.1. Geosci. Model Dev. 2010, 3, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Chai, T.; Kim, H.; Lee, P.; Tong, D.; Pan, L.; Tang, Y.; Huang, J.; McQueen, J.; Tsidulko, M.; Stajner, I. Evaluation of the United States National Air Quality Forecast Capability experimental real-time predictions in 2010 using Air Quality System ozone and NO2 measurements. Geosci. Model Dev. 2013, 6, 1831–1850. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; McQueen, J.; Wilczak, J.; Djalalova, I.; Stajner, I.; Shafran, P.; Allured, D.; Lee, P.; Pan, L.; Tong, D.; et al. Improving NOAA NAQFC PM2.5 predictions with a bias correction approach. Weather Forecast. 2017, 32, 407–421. [Google Scholar] [CrossRef]
- Lee, P.; McQueen, J.; Stajner, I.; Huang, J.; Pan, L.; Tong, D.; Kim, H.; Tang, Y.; Kondragunta, S.; Ruminski, M.; et al. NAQFC developmental forecast guidance for fine particulate matter (PM2.5). Weather Forecast. 2017, 32, 343–360. [Google Scholar] [CrossRef]
- Pan, L.; Kim, H.C.; Lee, P.; Saylor, R.; Tang, Y.; Tong, D.; Baker, B.; Kondragunta, S.; Xu, C.; Ruminski, M.G.; et al. Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign. Geosci. Model Dev. Discuss. 2018. [Google Scholar] [CrossRef] [Green Version]
- Tong, D.Q.; Lamsal, L.; Pan, L.; Ding, C.; Kim, H.; Lee, P.; Chai, T.-F.; Pickering, K.E.; Stajner, I. Long-term NOx trends over large cities in the United States during the great recession: Comparison of satellite retrievals, ground observations, and emission inventories. Atmos. Environ. 2015, 107, 70–84. [Google Scholar] [CrossRef]
- Randerson, J.T.; Van Der Werf, G.R.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S. Global Fire Emissions Database, Version 4.1 (GFEDv4); ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2017. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.Q.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.-Z.; Sun, C.; Zheng, X.; Dai, Y.; Xu, M.; Choi, H.I.; Ling, T.-J.; Qiao, F.; Kong, X.; Bi, X.; et al. CWRF performance at downscaling China climate characteristics. Clim. Dyn. 2019, 52, 2159–2184. [Google Scholar] [CrossRef]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies. [Last Revision on March 2002]. In Technical Report Series on Global Modeling and Data Assimilation; Suarez, M.J., Ed.; Goddard Space Flight Center: Greenbelt, MD, USA, 1999; Volume 15, p. 42. [Google Scholar]
- Chou, M.-D.; Suarez, M.J.; Liang, X.-Z.; Yan, M.M.-H.; Cote, C. A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Mem. 2001, 19, 56. [Google Scholar]
- Tao, W.-K.; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.; et al. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys. 2003, 82, 97–137. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Boville, B.A. Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model. J. Clim. 1993, 6, 1825–1842. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.-Z.; Choi, H.; Kunkel, K.E.; Dai, Y.; Joseph, E.; Wang, J.X.L.; Kumar, P. Surface boundary conditions for mesoscale regional climate models. Earth Interact. 2005, 9, 1–28. [Google Scholar] [CrossRef]
- Liang, X.-Z.; Xu, M.; Gao, W.; Kunkel, K.E.; Slusser, J.; Dai, Y.; Min, Q.; Houser, P.R.; Rodell, M.; Schaaf, C.B.; et al. Development of land surface albedo parameterization bases on Moderate Resolution Imaging Spectroradiometer (MODIS) data. J. Geophys. Res. 2005, 110, D11107. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.I.; Kumar, P.; Liang, X.-Z. Three-dimensional volume-averaged soil moisture transport model with a scalable parameterization of subgrid topographic variability. Water Resour. Res. 2007, 43, 15. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.I.; Liang, X.-Z. Improved Terrestrial Hydrologic Representation in Mesoscale Land Surface Models. J. Hydrometeorol. 2010, 11, 797–809. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, X.-Z. Evaluation of a Conjunctive Surface-Subsurface Process model (CCSP) over the contiguous United States at regional–local scales. J. Hydrometeorol. 2011, 12, 579–599. [Google Scholar] [CrossRef]
- Choi, H.I.; Liang, X.-Z.; Kumar, P. A conjunctive surface-subsurface flow representation for mesoscale land surface models. J. Hydrometeorol. 2013, 14, 1421–1442. [Google Scholar] [CrossRef]
- Xu, M.; Liang, X.-Z.; Samel, A.; Gao, W. MODIS consistent vegetation parameter specifications and their impacts on regional climate simulations. J. Clim. 2014, 27, 8578–8596. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quar. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive automated quality assurance of daily surface observations. J. Appl. Meteor. Clim. 2010, 49, 1615–1633. [Google Scholar] [CrossRef] [Green Version]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Tech. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Daly, C.; Neilson, R.P.; Phillips, D.L. A Statistical-topographic model for mapping climatological preicipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.-Z.; Li, L.; Kunkel, K.E. Regional climate model simulation of U.S. precipitation during 1982-2002. Part I: Annual cycle. J. Clim. 2004, 17, 3510–3529. [Google Scholar] [CrossRef]
- Cressman, G. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- He, H.; Liang, X.-Z.; Sun, C.; Tao, Z.; Tong, D.Q. The long-term trend and production sensitivity change of the U.S. ozone pollution from observations and model simulations. Atmos. Chem. Phys. Discuss. 2019. [Google Scholar] [CrossRef]
- Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco, P.; Ellison, L.; Kucsera, T.; da Silva, A.; Wang, J.; et al. Six global biomass burning emissions datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 2020, 20, 969–994. [Google Scholar] [CrossRef] [Green Version]
- Donahue, N.; Chuang, W.; Epstein, S.; Kroll, J.; Worsnop, D.; Robinson, A.; Adams, P.; and Pandis, S. Why do organic aerosols exist? Understanding aerosol lifetimes using the two- dimensional volatility basis set. Environ. Chem. 2013, 10, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Woody, M.; Baker, K.; Hayes, P.; Jimenez, J.; Koo, B.; Pye, H. Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS. Atmos. Chem. Phys. 2016, 16, 4081–4100. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.Y.; Hagan, D.H.; Coggon, M.M.; Koss, A.R.; Sekimoto, K.; de Gouw, J.; Warneke, C.; Cappa, C.D.; Kroll, J.H. Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmos. Chem. Phys. 2019, 19, 12797–12809. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; He, H.; Sun, C.; Tong, D.; Liang, X.-Z. Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era. Remote Sens. 2020, 12, 913. https://doi.org/10.3390/rs12060913
Tao Z, He H, Sun C, Tong D, Liang X-Z. Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era. Remote Sensing. 2020; 12(6):913. https://doi.org/10.3390/rs12060913
Chicago/Turabian StyleTao, Zhining, Hao He, Chao Sun, Daniel Tong, and Xin-Zhong Liang. 2020. "Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era" Remote Sensing 12, no. 6: 913. https://doi.org/10.3390/rs12060913
APA StyleTao, Z., He, H., Sun, C., Tong, D., & Liang, X. -Z. (2020). Impact of Fire Emissions on U.S. Air Quality from 1997 to 2016–A Modeling Study in the Satellite Era. Remote Sensing, 12(6), 913. https://doi.org/10.3390/rs12060913