Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling
Abstract
:1. Introduction
2. Methods
2.1. Derivation of STECs from GNSS Measurements
2.2. Ionosphere Modeling in 2D
2.3. Computerized Iionospheric Tomography (CIT)
2.4. Alternative Method to Determine Nadir-Dependent Biases
2.5. Data Processing
2.6. Handling of Remaining Error Sources
3. Results
3.1. Ionosphere Modeling in 2D
3.2. Ionospheric Tomography
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Institut für Geodäsie und Photagrammetrie, Eidg. Technische Hochschule Zürich: Braunschweig, Germany, 1999. [Google Scholar]
- Kunitsyn, V.E.; Tereshchenko, E.D. Ionospheric Tomography, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Raymund, T.D.; Franke, S.J.; Yeh, K.C. Ionospheric tomography: Its limitations and reconstruction methods. J. Atmos. Terr. Phys. 1994, 56, 637–657. [Google Scholar] [CrossRef]
- Austen, J.R. Ionospheric imaging using computerized tomography. Radio Sci. 1988, 23, 299–307. [Google Scholar] [CrossRef]
- Gordon, R.; Bender, R.; Herman, G.T. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theor. Biol. 1970, 29, 471–476. [Google Scholar] [CrossRef]
- Håkansson, M.; Jensen, A.B.O.; Horemuz, M.; Hedling, G. Review of code and phase biases in multi-GNSS positioning. GPS Solut. 2017, 21, 849–860. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.B.O.; Øvstedal, O.; Grinde, G. Development of a Regional Ionosphere Model for Norway. In Proceedings of the ION GNSS 2007, Fort Worth, TX, USA, 25–28 September 2007; pp. 2880–2889. [Google Scholar]
- Lanyi, G.E.; Roth, T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1988, 23, 483–492. [Google Scholar] [CrossRef]
- Sardon, E.; Zarraoa, N. Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases? Radio Sci. 1997, 32, 1899–1910. [Google Scholar] [CrossRef]
- Hauschild, A.; Montenbruck, O.; Sleewaegen, J.-M.; Huisman, L.; Teunissen, P.J.G. Characterization of Compass M-1 signals. GPS Solut. 2012, 16, 117–126. [Google Scholar] [CrossRef]
- Wanninger, L.; Beer, S. BeiDou satellite-induced code pseudorange variations: Diagnosis and therapy. GPS Solut. 2015, 19, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Wanninger, L.; Sumaya, H.; Beer, S. Group delay variations of GPS transmitting and receiving antennas. J. Geod. 2017, 91, 1099–1116. [Google Scholar] [CrossRef] [Green Version]
- Hatch, R. The Synergism of GPS Code and Carrier Measurements. In Proceedings of the Third International Symposium on Satellite Doppler Positioning at Physical Sciences Laboratory of New Mexico State University, Las Cruces, NM, USA, 8–12 February 1982; pp. 1213–1231. [Google Scholar]
- Melbourne, W.G. The case for ranging in GPS-based geodetic systems. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 373–386. [Google Scholar]
- Wübbena, G. Software developments of geodetic positioning with GPS using TI 4100 code and carrier measurements. In Proceedings of the First International Symposium on Precise Positioning with the Global Positioning System, Rockville, MD, USA, 15–19 April 1985; pp. 403–412. [Google Scholar]
- Håkansson, M. Characterization of GNSS observations from a Nexus 9 Android tablet. GPS Solut. 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- Banville, S.; Van Diggelen, F. Precision GNSS for everyone: Precise Positioning Using Raw GPS Measurements from Android Smartphones. GPS World 2016, 27, 43–48. [Google Scholar]
- Geng, J.; Li, G. On the feasibility of resolving Android GNSS carrier-phase ambiguities. J. Geod. 2019, 93, 2621–2635. [Google Scholar] [CrossRef]
- Gill, M.; Bisnath, S.; Aggrey, J.; Seepersad, G. Precise Point Positioning (PPP) using Low-Cost and Ultra-Low-Cost GNSS Receivers. In Proceedings of the (ION GNSS 2017), Portland, OR, USA, 25–29 September 2017; pp. 226–236. [Google Scholar]
- Li, G.; Geng, J. Characteristics of raw multi-GNSS measurement error from Google Android smart devices. GPS Solut. 2019, 23. [Google Scholar] [CrossRef]
- Navarro-Gallardo, M.; Bernhardt, N.; Kirchner, M.; Redenkiewicz Musial, J.; Sunkevic, M. Assessing Galileo Readiness in Android Devices Using Raw Measurements. In Proceedings of the (ION GNSS 2017), Portland, OR, USA, 25–29 September 2017; pp. 85–100. [Google Scholar]
- Niu, Z.; Nie, P.; Tao, L.; Sun, J.; Zhu, B. RTK with the Assistence of an IMU-Based Pedestrian Navigation Algorithm for Smartphones. Sensors 2019, 19, 3228. [Google Scholar] [CrossRef] [Green Version]
- Paziewski, J.; Sieradzki, R. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones. GPS Solut. 2019, 23. [Google Scholar] [CrossRef] [Green Version]
- Pirazzi, G.; Mazzoni, A.; Biagi, L.; Crespi, M. Preliminary Performance Analysis with a GPS+Galileo Enabled Chipset Embedded in a Smartphone. In Proceedings of the (ION GNSS 2017), Portland, OR, USA, 25–29 September 2017; pp. 101–115. [Google Scholar]
- Realini, E.; Caldera, S.; Pertusini, L.; Sampietro, D. Precise GNSS Positioning Using Smart Devices. Sensors 2017, 17, 2434. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.; Lentz, W.; Clare, A. On the Path to Precision - Observations with Android GNSS Observables. In Proceedings of the ION GNSS 2017, Portland, OR, USA, 25–29 September 2017; pp. 116–129. [Google Scholar]
- Zhang, X.; Tao, X.; Zhu, F.; Shi, X.; Wang, F. Quality assessment of GNSS observations from an Android N smartphone and positioning performance analysis using time-differenced filtering approach. GPS Solut. 2018, 22, 70. [Google Scholar] [CrossRef]
- Lilje, M.; Wiklund, P.; Hedling, G. The use of GNSS in Sweden and the national CORS network SWEPOS. In Proceedings of the FIG XXV International Congress, Kuala Lumpur, Malaysia, 16–21 June 2014. [Google Scholar]
- Leick, A.; Papoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more; Springer-Verlag: Wien, Austria, 2008. [Google Scholar]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Raymund, T.D.; Austen, J.R.; Franke, S.J.; Liu, C.H.; Klobuchar, J.A.; Stalker, J. Application of computerized tomography to the investigation of ionospheric structures. Radio Sci. 1990, 25, 771–789. [Google Scholar] [CrossRef]
- Pryse, S.E.; Kersley, L.; Rice, D.L.; Russel, C.D.; Walker, I.K. Tomographic imaging of the ionospheric mid-latitude trough. Ann. Geophys. 1993, 11, 144–149. [Google Scholar]
- Wen, D.; Yuan, Y.; Ou, J.; Huo, X.; Zhang, K. Three-dimensional ionospheric tomography by an improved algebraic reconstruction technique. GPS Solut. 2007, 11, 251–258. [Google Scholar] [CrossRef]
- Raymund, T.D.; Bresler, Y.; Anderson, D.N.; Daniell, R.E. Model-assisted ionospheric tomography: A new algorithm. Radio Sci. 1994, 29, 1493–1512. [Google Scholar] [CrossRef]
- Zhou, C.; Fremouw, E.J.; Sahr, J.D. Optimal trunctation criterion for application of singular value decomposition to ionospheric tomography. Radio Sci. 1999, 34, 155–166. [Google Scholar] [CrossRef]
- Lee, J.K. GPS-Based Radio Tomography with Edge-Preserving Regularization. IEEE Trans. Geosci. Remote Sens. 2009, 47, 312–324. [Google Scholar] [CrossRef]
- Lee, J.K.; Kamalabadi, F.; Makela, J.J. Localized three-dimensional ionospheric tomography with GPS ground receiver measurements. Radio Sci. 2007, 42, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nygrén, T.; Markkanen, M.; Lehtinen, M.; Tereshchenko, E.D.; Khudukon, B.Z. Stochastic inversion in ionospheric radiotomography. Radio Sci. 1997, 32, 2359–2372. [Google Scholar] [CrossRef]
- Yao, Y.; Zhai, C.; Kong, J.; Zhao, Q.; Zhao, C. A modified three-dimensional ionospheric tomography algorithm with side rays. GPS Solut. 2018, 22. [Google Scholar] [CrossRef]
- Nava, B.; Coïsson, P.; Radicella, S.M. A new version of the NeQuick ionosphere electron density model. J. Atmos. Sol. Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Yao, Y.; Tang, J.; Chen, P.; Zhang, S.; Chen, J. An Improved Iterative Algorithm for 3-D Ionospheric Tomography Reconstruction. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4696–4706. [Google Scholar] [CrossRef]
- Bezanson, J.; Karpinski, S.; Shah, V.B.; Edelman, A. Julia: A Fast Dynamic Language for Technical Computing. arXiv 2012, arXiv:1209.5145. [Google Scholar]
- Domahidi, A.; Chu, E.; Boyd, S. ECOS: An SOCP Solver for Embedded Systems. In Proceedings of the European Control Conference (ECC), Zürich, Switzerland, 17–19 July 2013; pp. 3071–3076. [Google Scholar]
- Springer, T.; Dilssner, F. SVN49 and Other GPS Anomalies. Inside GNSS 2009, 4, 32–36. [Google Scholar]
- Montenbruck, O.; Hauschild, A. Differential Code Bias Estimation Using Multi-GNSS Observations and Global Ionosphere Maps. In Proceedings of the ITM 2014, San Diego, CA, USA, 27–29 January 2014; pp. 802–812. [Google Scholar]
- Wu, J.-T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Astrodynamics 1992, 1991, 1647–1660. [Google Scholar]
- IGS; RTCM-SC104. Rinex—The Receiver Independent Exchange Format—Version 3.02; Astronomical Institute University of Bern: Bern, Switzerland, 2013. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Håkansson, M. Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling. Remote Sens. 2020, 12, 995. https://doi.org/10.3390/rs12060995
Håkansson M. Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling. Remote Sensing. 2020; 12(6):995. https://doi.org/10.3390/rs12060995
Chicago/Turabian StyleHåkansson, Martin. 2020. "Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling" Remote Sensing 12, no. 6: 995. https://doi.org/10.3390/rs12060995
APA StyleHåkansson, M. (2020). Nadir-Dependent GNSS Code Biases and Their Effect on 2D and 3D Ionosphere Modeling. Remote Sensing, 12(6), 995. https://doi.org/10.3390/rs12060995