Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Samples
2.3. Methods
2.4. Accuracy Evaluation
2.5. Landscape Indexes
3. Results
3.1. Classification Accuracy
3.2. Changes in the Landscape Pattern
3.2.1. The Class-Level Pattern
3.2.2. The Landscape-Level Pattern
3.3. The Transformation of Land Cover
3.4. Relation between Land Cover Change and Vegetation
4. Discussion
4.1. Comparison of the Classification Algorithms
4.2. Driving Forces for Land Cover Change
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Pan, C.G.; Pope, A.; Kamp, U.; Dashtseren, A.; Walther, M.; Syromyatina, M.V. Glacier recession in the Altai Mountains of Mongolia in 1990–2016. Geogr. Ann. Ser. Phys. Geogr. 2018, 100, 185–203. [Google Scholar] [CrossRef]
- Barry, R.G. The status of research on glaciers and global glacier recession: A review. Prog. Phys. Geogr. Earth Environ. 2006, 30, 285–306. [Google Scholar] [CrossRef]
- Mu, J.; Li, Z.; Zhang, H.; Liang, P. The global glacierized area: Current situation and recent change, based on the Randolph Glacier Inventory (RGI 6.0) published in 2017. J. Glaciol. Geocryol. 2018, 40, 238–248. [Google Scholar]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Wilson, R.; Harrison, S.; Reynolds, J.; Hubbard, A.; Glasser, N.F.; Wundrich, O.; Anacona, P.I.; Mao, L.; Shannon, S. The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology 2019, 332, 51–65. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F.; Liu, S.Y. Estimation on the response of glaciers in China to the global warming in the 21st century. Chin. Sci. Bull. 2000, 45, 668–672. [Google Scholar] [CrossRef]
- Su, Z.; Shi, Y.F. Response of monsoonal temperate glaciers to global warming since the Little Ice Age. Quat. Int. 2002, 97–98, 123–131. [Google Scholar] [CrossRef]
- Yang, W.; Yao, T.; Xu, B.; Ma, L.; Wang, Z.; Wan, M. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 2097–2102. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land use and land cover change in the Qinghai lake region of the Tibetan Plateau and its impact on ecosystem services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Chen, D. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035, (In Chinese with English abstract). [Google Scholar]
- Cui, X.; Graf, H.-F. Recent land cover changes on the Tibetan Plateau: A review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Xu, X.; Chen, H.; Levy, J.K. Spatiotemporal vegetation cover variations in the Qinghai-Tibet Plateau under global climate change. Sci. Bull. 2008, 53, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Le Bris, R.; Paul, F.; Frey, H.; Bolch, T. A new satellite-derived glacier inventory for western Alaska. Ann. Glaciol. 2011, 52, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Duan, C.; Shi, P.; Song, M.; Zhang, X.; Zong, N.; Zhou, C. Land use and land cover change in the Kailash sacred landscape of China. Sustainability 2019, 11, 1788. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Yang, G.; Yan, C.Z.; Hanchen, D.; Liu, G.; Zhu, Y. Driving forces behind land use and cover change in the Qinghai-Tibetan Plateau: A case study of the source region of the Yellow River, Qinghai Province, China. Environ. Earth Sci. 2009, 59, 793–801. [Google Scholar] [CrossRef]
- Li, Z.; Tian, L.; Wu, H.; Wang, W.; Zhang, S.; Zhang, J.; Li, X. Changes in glacier extent and surface elevations in the Depuchangdake region of northwestern Tibet, China. Quat. Res. 2016, 85, 25–33. [Google Scholar] [CrossRef]
- Duan, H.; Yao, X.; Liu, S.; Gao, Y.; Qi, M.; Liu, J.; Zhang, D.; Li, X. Glacier change in the Tanggula Mountains, Tibetan Plateau, in 1969–2015. J. Mt. Sci. 2019, 16, 2663–2678. [Google Scholar] [CrossRef]
- Wang, L.; Lu, A.; Yao, T.; Wang, N. The study of typical glaciers and lakes fluctuations using remote sensing in Qinghai-Tibetan Plateau. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Buscema, M. Back propagation neural networks. Subst. Use Misuse 1998, 33, 233–270. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Wang, S.; Liu, J.; Zhou, L. Multi-source remote-sensing monitoring of the monsoonal maritime glaciers at Mt. Dagu, East Qinghai-Tibetan Plateau, China. IEEE Access 2019, 7, 48307–48317. [Google Scholar] [CrossRef]
- Potter, C.; Li, S.; Huang, S.; Crabtree, R.L. Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data. Remote Sens. Environ. 2012, 121, 61–68. [Google Scholar] [CrossRef]
- Keshri, A.K.; Shukla, A.; Gupta, R.P. ASTER ratio indices for supraglacial terrain mapping. Int. J. Remote Sens. 2008, 30, 519–524. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Mathivanan, M. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices—A case study of Chennai Metropolitan Area, India. Environ. Monit. Assess. 2019, 192, 15. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Xie, D.; Zhao, Y. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens. Lett. 2010, 1, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Strigl, D.; Kofler, K.; Podlipnig, S. Performance and scalability of GPU-based convolutional neural networks. In Proceedings of the 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, Pisa, Italy, 17–19 Feburay 2010; pp. 317–324. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- McGarigal, K.S.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Available online: https://www.umass.edu/landeco/research/fragstats/downloads/fragstats_downloads.html (accessed on 19 March 2020).
- Zhu, Y.; Wang, C.; Takeru, S. Remote sensing-based analysis of landscape pattern evolution in industrial rural areas: A case of Southern Jiangsu, China. Sustainability 2019, 11, 4994. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Yoo, C.; Han, D.; Im, J.; Bechtel, B. Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 157, 155–170. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K. Effect of precipitation seasonality on climatic sensitivity of glacier mass balance. Earth Planet. Sci. Lett. 2008, 276, 14–19. [Google Scholar] [CrossRef]
- Chen, H.; Yang, J.; Tan, C. Responsivity of glacier to climate change in China. J. Glaciol. Geocryol. 2017, 39, 16–23. [Google Scholar]
- Xiang, L.; Liu, Z.; Liu, J. Variation of glaciers and its response to climate change in Bomi County of Tibet autonomous region in 1980–2010. J. Glaciol. Geocryol. 2013, 35, 593–600. [Google Scholar]
- Zhang, C.; Pan, X.; Li, H.; Gardiner, A.; Sargent, I.; Hare, J.; Atkinson, P.M. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 2018, 140, 133–144. [Google Scholar] [CrossRef] [Green Version]
Image | Satellite | Acquisition Date | Cloud Coverage |
---|---|---|---|
Image 1 | Landsat 5 | 1990-05-17 | 3% |
Image 2 | Landsat 7 | 2000-05-04 | 1.23% |
Image 3 | Landsat 5 | 2007-04-30 | 1.75% |
Image 4 | Landsat 8 | 2016-05-24 | 15% |
1990 | 2000 | 2007 | 2016 | |||||
---|---|---|---|---|---|---|---|---|
T | V | T | V | T | V | T | V | |
Vegetation | 4097 | 1365 | 2894 | 965 | 4216 | 1405 | 5657 | 1885 |
Ice | 9218 | 3073 | 10198 | 3399 | 8588 | 2862 | 6090 | 2030 |
Bare land | 1188 | 396 | 1431 | 477 | 1868 | 622 | 235 | 78 |
Cloud | 37 | 12 | 63 | 21 | 10 | 3 | 2235 | 745 |
Water | 53 | 17 | 86 | 28 | 33 | 11 | 84 | 28 |
Shadow | 161 | 54 | 82 | 27 | 40 | 13 | 453 | 151 |
Name | Calculation Formula | Notes |
---|---|---|
Patch Density (PD) [39] | N = the total number of patches A = total landscape area (m2). | |
Mean Patch Area (AREA_MN) [37] | A = total landscape area (m2). N = the total number of patches. | |
Edge Density (ED) [37] | E = total length (m) of edge in landscape. A = total landscape area (m2). | |
Landscape Shape Index (LSI) [37] | E* = total length (m) of the landscape edge; includes the entire landscape boundary and some or all background edge segments. A = total landscape area (m2). | |
Largest Patch Index (LPI) [39] | aij = the area (m2) of patches numbered ij. A = total landscape area (m2). | |
Aggregation Index (AI) [37] | gii = number of like adjacencies (joins) between pixels of patch type (class) i based on the single-count method. Max->gii = maximum number of like adjacencies (joins) between pixels of patch type (class) i (see below) based on the single-count method. Pi = proportion of landscape comprised of patch type (class) i. | |
Contagion Index (CONTAG) [39] | Pi = proportion of the landscape occupied by patch type (class) i. gik = number of adjacencies (joins) between pixels of patch types (classes) i and k based on the double-count method. m = number of patch types (classes) present in the landscape, including the landscape border if present. | |
Shannon’s Diversity Index (SHDI) [39] | Pi = proportion of landscape comprised of patch type (class) i. |
Class | Vegetation | Ice | Bare Land | Cloud | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | UA(%) | PA(%) | OA(%) | Kappa | ||
1990 | RF | 97.73 | 94.65 | 97.64 | 99.87 | 84.39 | 94.19 | 83.33 | 41.67 | 96.46 | 0.931 |
CNN | 97.13 | 94.36 | 97.08 | 99.58 | 93.71 | 84.34 | 100 | 75.00 | 95.91 | 0.921 | |
BPNN | 97.96 | 98.32 | 98.65 | 99.77 | 91.83 | 93.69 | 83.33 | 83.33 | 97.82 | 0.958 | |
2000 | RF | 95.07 | 95.95 | 99.38 | 99.76 | 92.00 | 96.44 | 0 | 66.67 | 97.78 | 0.953 |
CNN | 96.55 | 92.95 | 98.60 | 99.68 | 87.35 | 91.19 | 85.71 | 85.71 | 96.99 | 0.936 | |
BPNN | 97.67 | 95.75 | 99.44 | 99.62 | 90.85 | 95.81 | 78.95 | 71.43 | 98.07 | 0.959 | |
2007 | RF | 99.04 | 95.66 | 98.89 | 99.90 | 91.02 | 97.75 | 0 | 0 | 97.86 | 0.962 |
CNN | 98.95 | 94.23 | 98.38 | 99.62 | 88.69 | 94.53 | 0 | 0 | 97.07 | 0.948 | |
BPNN | 99.36 | 99.29 | 99.48 | 99.76 | 95.90 | 97.75 | 0 | 0 | 98.92 | 0.981 | |
2016 | RF | 90.95 | 97.61 | 94.93 | 97.68 | 0 | 0 | 90.19 | 87.65 | 92.55 | 0.884 |
CNN | 96.71 | 91.94 | 93.94 | 98.47 | 44.83 | 83.33 | 95.02 | 89.66 | 93.19 | 0.897 | |
BPNN | 96.60 | 96.45 | 95.15 | 98.67 | 69.44 | 96.15 | 92.63 | 87.79 | 94.63 | 0.918 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Liu, Y.; Xu, L.; Li, K.; Hu, P.; Chen, J. Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications. Remote Sens. 2020, 12, 999. https://doi.org/10.3390/rs12060999
Yang F, Liu Y, Xu L, Li K, Hu P, Chen J. Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications. Remote Sensing. 2020; 12(6):999. https://doi.org/10.3390/rs12060999
Chicago/Turabian StyleYang, Fangfang, Yanxu Liu, Linlin Xu, Kui Li, Panpan Hu, and Jixing Chen. 2020. "Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications" Remote Sensing 12, no. 6: 999. https://doi.org/10.3390/rs12060999
APA StyleYang, F., Liu, Y., Xu, L., Li, K., Hu, P., & Chen, J. (2020). Vegetation-Ice-Bare Land Cover Conversion in the Oceanic Glacial Region of Tibet Based on Multiple Machine Learning Classifications. Remote Sensing, 12(6), 999. https://doi.org/10.3390/rs12060999