Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Acquisition and Processing
2.2.1. Leaf Sampling
2.2.2. Hyperspectral Image Acquisition and Processing
2.3. Methods
2.3.1. Extraction of Spectral Data and Selection of Optimum Wavebands
2.3.2. Extraction of Vegetation Indices
2.3.3. Extraction of Texture Data
2.3.4. Selection of Optimal Vegetation Indices and Texture Features
2.3.5. Performance Test of Different Features for Identifying Wheat Yellow Rust
3. Results
3.1. Disease Symptom Development
3.2. Spectral Response of Wheat Yellow Rust and Selection of Effective Wavebands
3.3. Selection of Sensitive Vegetation Indices and Textural Features for Identifying Wheat Yellow Rust
3.4. Comparison of the Performance of Models with Different Features
- OWs selected by the SPA (538, 598, 689, 703, 751, and 895 nm).
- VIs selected by the CFS (NRI, PRI, GI, and ARI).
- TFs selected by the CFS (COR1, COR2, ENT2, and SEC3).
- The combination of OWs and TFs.
- The combination of VIs and TFs.
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages. Sensors 2019, 19, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.M. Epidemiology and control of stripe rust [Puccinia striiformis f.sp.tritici] on wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Wan, A.M.; Chen, X.M.; He, Z.H. Wheat stripe rust in China. Aust. J. Agric. Res. 2007, 58, 605–619. [Google Scholar] [CrossRef]
- Hu, X.; Cao, S.; Xu, X. Predicting overwintering of wheat stripe rust in central and north-western China. Plant Dis. 2020, 104, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agric. 2010, 72, 1–13. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Yao, Z.; Lei, Y.; He, D. Early visual detection of wheat stripe rust using visible/near-infrared hyperspectral imaging. Sensors 2019, 19, 952. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.J.; He, Y.L. Identification of powdery mildew and stripe rust in wheat using hyperspectral Imaging. Spectrosc. Spectr. Anal. 2019, 39, 969–976. [Google Scholar]
- Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 2011, 11, 3765–3779. [Google Scholar] [CrossRef] [Green Version]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Lamb, D.W.; Niu, Z.; Zhang, Y.; Liu, L.; Wang, J. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 2007, 8, 187–197. [Google Scholar] [CrossRef]
- Kavdir, I.; Guyer, D.E. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosyst. Eng. 2004, 89, 331–344. [Google Scholar] [CrossRef]
- Cen, H.; Lu, R.; Zhu, Q.; Mendoza, F. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification. Postharvest Biol. Technol. 2016, 111, 352–361. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, M.; Gao, Y. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis. Agric. 2017, 19, 379–394. [Google Scholar] [CrossRef]
- Xie, C.; He, Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves. Sensors 2016, 16, 676. [Google Scholar] [CrossRef] [Green Version]
- Pydipati, R.; Burks, T.; Lee, W. Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric. 2006, 52, 49–59. [Google Scholar] [CrossRef]
- Ram, S.; Anand, D.; Jalal, S. Apple disease classification using color, texture and shape features from images. Signal Image Video Process. 2015, 10, 819–826. [Google Scholar]
- Al-Saddik, H.; Laybros, A.; Billiot, B.; Cointault, F. Using Image Texture and Spectral Reflectance Analysis to Detect Yellowness and Esca in Grapevines at Leaf-Level. Remote Sens. 2018, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New spectral index for detecting wheat yellow rust using sentinel-2 multispectral imagery. Sensors. 2018, 18, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, B.; Yoon, S.; Zhuang, H.; Wang, W.; Li, C. Prediction of pH of Fresh Chicken Breast Fillets by VNIR Hyperspectral Imaging. J. Food Eng. 2017, 208, 57–65. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araújo, M.C.U.; Fragoso, W.D.; Silva, E.C.; José, G.E.; Soares, S.F.C.; Paiva, H.M. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemom. Intell. Lab. Syst. 2008, 92, 83–91. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Huang, W.; Guan, Q.; Luo, J.; Zhang, J.; Zhao, J.; Liang, D.; Huang, L.; Zhang, D. New optimized spectral indices for identifying and monitoring winter wheat diseases. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2516–2524. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. NASA Spéc. Publ. 1974, 1, 309–317. [Google Scholar]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Devadas, R.; Lamb, D.W.; Simpfendorfer, S.; Backhouse, D. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precis. Agric. 2009, 10, 459–470. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.; Huntington, J. Early Simulation Results of the Aries-1 Satellite Sensor for Multi-Temporal Vegetation Research Derived from Aviris. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999; pp. 1–10. [Google Scholar]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sens. Environ. 2012, 124, 310–320. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, C.; Wang, J.; Jia, X.; Yang, G.; Song, X.; Feng, H. An improved combination of spectral and spatial features for vegetation classification in hyperspectral images. Remote Sens. 2017, 9, 261. [Google Scholar] [CrossRef] [Green Version]
- Knauer, U.; Matros, A.; Petrovic, T.; Zanker, T.; Scott, E.S.; Seiffert, U. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images. Plant Methods 2017, 13, 1–15. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Yoon, S.-C.; Zhuang, H.; Li, Y.-F. Using a Combination of Spectral and Textural Data to Measure Water-Holding Capacity in Fresh Chicken Breast Fillets. Appl. Sci. 2018, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Chuanlei, Z.; Shanwen, Z.; Jucheng, Y.; Yancui, S.; Jia, C. Apple leaf disease identification using genetic algorithm and correlation based feature selection method. Int. J. Agric. Biol. Eng. 2017, 10, 74–83. [Google Scholar]
- Hall, M.A.; Holmes, G. Benchmarking Attribute Selection Techniques for Discrete Class Data Mining. IEEE Trans. Knowl. Data Eng. 2003, 15, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Karegowda, A.G.; Manjunath, A.S.; Ratio, G.; Evaluation, C.F. Comparative study of attribute selection using gain ratio and correlation based feature selection. Int. J. Inf. Technol. Knowl. Knowl. Manag. 2010, 2, 271–277. [Google Scholar]
- Rumpf, T.; Mahlein, A.; Steiner, U.; Oerke, E.; Dehne, H.; Plümer, L. Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Römer, C.; Bürling, K.; Hunsche, M.; Rumpf, T.; Noga, G.; Plümer, L. Robust fitting of fluorescence spectra for pre-symptomatic wheat leaf rust detection with Support Vector Machines. Comput. Electron. Agric. 2011, 79, 180–188. [Google Scholar] [CrossRef]
- Amari, S.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classificatio; Dep. Comput. Sci. Natl. Taiwan Univ.: Taipei, Taiwan, 2008. [Google Scholar]
- Ma, H.; Huang, W.; Jing, Y.; Pignatti, S.; Laneve, G.; Dong, Y.; Ye, H.; Liu, L.; Guo, A.; Jiang, J. Identification of Fusarium Head Blight in Winter Wheat Ears Using Continuous Wavelet Analysis. Sensors 2019, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Piedra-Fernández, J.A.; Cantón-Garbín, M.; Wang, J.Z. Feature selection in AVHRR ocean satellite images by means of filter methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4193–4203. [Google Scholar] [CrossRef]
- Xu, X.; Ma, L.; Hu, X. Overwintering of wheat stripe rust under field conditions in the northwestern regions of China. Plant Dis. 2019, 103, 638–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, J.; Liu, C.; Hu, X.; Xu, X.; Guo, L.; Chen, W.H. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery. Comput. Electron. Agric. 2019, 167, 105035. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W.H. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Loraamm, R.W.; Yang, G.; Wang, J. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput. Electron. Agric. 2014, 100, 79–87. [Google Scholar] [CrossRef]
- Cheng, T.; Rivard, B.; Sanchez-Azofeifa, A. Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sens. Environ. 2011, 115, 659–670. [Google Scholar] [CrossRef]
20 April | 27 April | 4 May | 11 May | 15 May | 18 May | 25 May | |
---|---|---|---|---|---|---|---|
Healthy | 8 | 6 | 6 | 7 | 7 | 5 | 6 |
Yellow Rust | 4 | 6 | 6 | 8 | 8 | 10 | 9 |
Sum | 12 | 12 | 12 | 15 | 15 | 15 | 15 |
Index | Definition | Bands and Equations | Related To | Reference |
---|---|---|---|---|
PRI | Photosynthetic Radiation Index | Photosynthetic activity | [27] | |
PHRI | Physiological Reflectance Index | [27] | ||
NDVI | Normalized Difference Vegetation Index | [28] | ||
MSR | Modified Simple Ratio | Crop growth status | [29] | |
TVI | Triangular Vegetation Index | [30] | ||
SIPI | Structural Independent Pigment Index | Pigment content | [31] | |
NPCI | Normalized Pigment Chlorophyll Index | [32] | ||
ARI | Anthocyanin Reflectance Index | [33] | ||
GI | Greenness Index | [34] | ||
TCARI | Transformed Chlorophyll Absorption in Reflectance Index | [35] | ||
PSRI | Plant Senescence Reflectance Index | [36] | ||
RVSI | Ratio Vegetation Structure Index | Water and nitrogen content | [37] | |
NRI | Nitrogen Reflectance Index | [38] | ||
YRI | Yellow Rust Index, | Wheat disease | [26] |
Texture | Description | Equation |
---|---|---|
Mean (MEA) | The Mean is the average grey level of all pixels in the matrix. | |
Variance (VAR) | The Variance describes the rate of change of the pixels’ values. | |
Homogeneity (HOM) | The Homogeneity indicates the uniformity of the matrix. | |
Contrast (CON) | The Contrast represents the local variations in the matrix. | |
Dissimilarity (DIS) | The Dissimilarity reflects the difference in the grayscale. | |
Entropy (ENT) | The Entropy expresses the level of disorder in the matrix. | |
Second moment (SEC) | The Second Moment represents the uniformity degree of the grayscale. | |
Correlation (COR) | The orrelation is a measurement of image linearity among the pixels. |
Features | Mean | Standard Deviations | Significance of T-Test | |||
---|---|---|---|---|---|---|
Healthy | Yellow Rust | Healthy | Yellow Rust | |||
VIs | NRI | 0.264 | 0.116 | 0.074 | 0.065 | *** |
PRI | 0.084 | 0.260 | 0.068 | 0.092 | *** | |
GI | 1.858 | 1.222 | 0.326 | 0.231 | *** | |
ARI | −2.038 | 0.883 | 1.489 | 0.949 | *** | |
TFs | COR1 | 0.241 | 0.353 | 0.120 | 0.101 | *** |
COR2 | 0.140 | 0.114 | 0.088 | 0.017 | *** | |
ENT2 | 0.279 | 0.462 | 0.158 | 0.159 | *** | |
SEC3 | 1.503 | 1.950 | 0.429 | 0.160 | *** |
Input Feature | Yellow Rust | Healthy | Sum | U (%) | OA (%) | Kappa | |
---|---|---|---|---|---|---|---|
OWs | Yellow Rust | 38 | 11 | 49 | 77.5 | 83.3 | 0.667 |
Healthy | 5 | 42 | 47 | 89.4 | |||
Sum | 43 | 53 | 96 | ||||
P (%) | 88.4 | 79.2 | |||||
VIs | Yellow Rust | 48 | 1 | 49 | 98.0 | 89.5 | 0.789 |
Healthy | 9 | 38 | 47 | 80.9 | |||
Sum | 57 | 39 | 96 | ||||
P (%) | 84.2 | 97.4 | |||||
TFs | Yellow Rust | 42 | 7 | 49 | 85.7 | 86.5 | 0.73 |
Healthy | 6 | 41 | 47 | 87.2 | |||
Sum | 48 | 48 | 96 | ||||
P (%) | 87.5 | 85.4 | |||||
OWs + TFs | Yellow Rust | 44 | 5 | 49 | 89.8 | 90.6 | 0.812 |
Healthy | 4 | 43 | 47 | 91.5 | |||
Sum | 48 | 48 | 96 | ||||
P (%) | 91.7 | 89.6 | |||||
VIs + TFs | Yellow Rust | 49 | 0 | 49 | 100 | 95.8 | 0.916 |
Healthy | 4 | 43 | 47 | 91.5 | |||
Sum | 53 | 43 | 96 | ||||
P (%) | 92.5 | 100 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sens. 2020, 12, 1419. https://doi.org/10.3390/rs12091419
Guo A, Huang W, Ye H, Dong Y, Ma H, Ren Y, Ruan C. Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sensing. 2020; 12(9):1419. https://doi.org/10.3390/rs12091419
Chicago/Turabian StyleGuo, Anting, Wenjiang Huang, Huichun Ye, Yingying Dong, Huiqin Ma, Yu Ren, and Chao Ruan. 2020. "Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images" Remote Sensing 12, no. 9: 1419. https://doi.org/10.3390/rs12091419
APA StyleGuo, A., Huang, W., Ye, H., Dong, Y., Ma, H., Ren, Y., & Ruan, C. (2020). Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images. Remote Sensing, 12(9), 1419. https://doi.org/10.3390/rs12091419