Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Survey
2.3. Preparation of a Ground Truth Image
2.4. Earth Observation Data
2.4.1. Satellite Band Information
2.4.2. Spectral Indices
2.4.3. Digital Elevation Model
2.4.4. Canopy Height Model
2.5. Artificial Neural Network Classification
2.6. Workflow of Assessment of Natural Recovering Mangrove
2.6.1. Experimental Analysis through Input Feature and Hyper-Parameter Tuning
2.6.2. Model Application to a New Dataset Using Transfer Learning
2.6.3. Accuracy Assessment
2.6.4. Post-Classification Change Detection
2.6.5. Assessment of Natural Recovering Mangroves at Different Abandoned Sites
3. Results
3.1. Artificial Neural Network Classification
3.1.1. Experimental Results of Input Feature Selection
3.1.2. Experimental Results of Hyper-Parameter Tuning
3.2. Classification Results of New Prediction Using Transfer Learning
3.3. Mangrove Changes and Drivers
3.4. Natural Recovery of Mangroves at Abandoned Sites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spalding, M. World Atlas of Mangroves; Routledge: Abingdon-on-Thames, UK, 2010. [Google Scholar]
- Brander, L.M.; Wagtendonk, A.J.; Hussain, S.S.; McVittie, A.; Verburg, P.H.; De Groot, R.S.; Van Der Ploeg, S. Ecosystem service values for mangroves in Southeast Asia: A meta-analysis and value transfer application. Ecosyst. Serv. 2012, 1, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Veettil, B.K.; Pereira, S.F.R.; Quang, N.X. Rapidly diminishing mangrove forests in Myanmar (Burma): A review. Hydrobiologia 2018, 822, 19–35. [Google Scholar] [CrossRef]
- Lewis, R.R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 2005, 24, 403–418. [Google Scholar] [CrossRef]
- Kamali, B.; Hashim, R. Mangrove restoration without planting. Ecol. Eng. 2011, 37, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Stanley, D.O.; Broadhead, J.; Aung Aung, M.; Burma. Forest Department; Food and Agriculture Organization of the United Nations. The Atlas and Guidelines for Mangrove Management in Wunbaik Reserved Forest; FAO-UN, Seed Division Compound, Insein Road, Yangon, Myanmar Publications: Yangon, Myanmar, 2011; Volume iii, 132p. [Google Scholar]
- Giri, C. Observation and monitoring of mangrove forests using remote sensing: Opportunities and challenges. Remote Sens. 2016, 8, 783. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231, 111223. [Google Scholar] [CrossRef]
- Yoshino, K.; Pham, T.D.; Bui, D.T.; Friess, D.A.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sens. 2019, 11, 1–24. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Ahmad, A.; Quegan, S. Comparative analysis of supervised and unsupervised classification on multispectral data. Appl. Math. Sci. 2013, 7, 3681–3694. [Google Scholar] [CrossRef]
- Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.; Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote Sens. 1998, 19, 935–956. [Google Scholar] [CrossRef]
- Rahman, M.; Ullah, R.; Lan, M.; Sri Sumantyo, J.T.; Kuze, H.; Tateishi, R. Comparison of Landsat image classification methods for detecting mangrove forests in Sundarbans. Int. J. Remote Sens. 2013, 34, 1041–1056. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Nghia, N.H.; Nguyen, H.T.T.; Le, A.T.; Tran, L.T.N.; Duong, L.V.K.; Bohm, S.; Furniss, M.J. Classification methods for mapping mangrove extents and drivers of change in Thanh Hoa province, Vietnam during 2005–2018. For. Soc. 2020, 4, 225–242. [Google Scholar] [CrossRef]
- Toosi, N.B.; Soffianian, A.R.; Fakheran, S.; Pourmanafi, S.; Ginzler, C.; Waser, L.T. Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Glob. Ecol. Conserv. 2019, 19. [Google Scholar] [CrossRef]
- Kamal, M.; Jamaluddin, I.; Parela, A.; Farda, N.M. Comparison of Google Earth Engine (GEE)-based machine learning classifiers for mangrove mapping. In Proceedings of the 40th Asian Conference Remote Sensing, ACRS 2019, Daejeon, Korea, 14–18 October 2019; Volume 2000, pp. 1–8. [Google Scholar]
- Campomanes, F.; Pada, A.V.; Silapan, J. Mangrove classification using support vector machines and random forest algorithm: A comparative study. In Proceedings of the GEOBIA 2016—Solutions & Synergies, Enschede, The Netherlands, 14–16 July 2016; pp. 2–6. [Google Scholar]
- Altaei, M.S.M. Satellite Image Classification Using Artificial Neural Network. Int. J. Res. Advent Technol. 2019, 7, 459–462. [Google Scholar]
- Toshniwal, M. Satellite image classification using neural networks. In Proceedings of the Third International Conference on Sciences of Electronic, Technology of Information and Telecommunications (SETIT 2005), Susa, Tunisia, 17–21 March 2005; pp. 1–5. [Google Scholar]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Com. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic mangrove species mapping with multiple-source remote-sensing datasets using label distribution learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; Aung, K.S.; Chishtie, F.; Saah, D. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 2019, 11, 831. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Wong, F.K.K.; Fung, T. Classification of mangrove species using combined WordView-3 and LiDAR data in Mai Po Nature Reserve, Hong Kong. Remote Sens. 2019, 11, 2114. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency ESA—About the Launch. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch (accessed on 30 June 2020).
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef] [Green Version]
- Connette, G.; Oswald, P.; Songer, M.; Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral landsat imagery for Myanmar’S Tanintharyi Region. Remote Sens. 2016, 8, 882. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.T.; Manley-Harris, M.; Pham, T.D.; Hawes, I. A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New Zealand. Remote Sens. 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.S.; El-Hady, M.A.; Rahim, I.S. Soil salinity mapping utilizing sentinel-2 and neural networks. Indian J. Agric. Res. 2018, 52, 524–529. [Google Scholar]
- Mohite, J.; Twarakavi, N.; Pappula, S. Evaluating the Potential of Sentinel-2 for Low Severity Mites Infestation Detection in Grapes. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, Valencia, Spain, 22–27 July 2018; pp. 4651–4654. [Google Scholar]
- Pereira-Pires, J.E.; Aubard, V.; Ribeiro, R.A.; Fonseca, J.M.; Silva, J.M.N.; Mora, A. Semi-automatic methodology for fire break maintenance operations detection with sentinel-2 imagery and artificial neural network. Remote Sens. 2020, 12, 909. [Google Scholar] [CrossRef] [Green Version]
- Kristollari, V.; Karathanassi, V. Artificial neural networks for cloud masking of Sentinel-2 ocean images with noise and sunglint. Int. J. Remote Sens. 2020, 41, 4102–4135. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lee, S.; Jung, H.S. Mapping forest vertical structure in Gong-Ju, Korea using sentinel-2 satellite images and artificial neural networks. Appl. Sci. 2020, 10, 1666. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; Liu, X.; Fatoyinbo, T.E.; Lagomasino, D. Evaluating combinations of sentinel-2 data and machine-learning algorithms for mangrove mapping in West Africa. Remote Sens. 2019, 11, 2928. [Google Scholar] [CrossRef] [Green Version]
- Bihamta Toosi, N.; Soffianian, A.R.; Fakheran, S.; Pourmanafi, S.; Ginzler, C.; Waser, L.T. Land Cover Classification in Mangrove Ecosystems Based on VHR Satellite Data and Machine Learning—An Upscaling Approach. Remote Sens. 2020, 12, 2684. [Google Scholar] [CrossRef]
- Yu, X.; Shao, H.B.; Liu, X.H.; Zhao, D.Z. Applying neural network classification to obtain mangrove landscape characteristics for monitoring the travel environment quality on the Beihai Coast of Guangxi, P.R. China. Clean Soil Air Water 2010, 38, 289–295. [Google Scholar] [CrossRef]
- Chun, B.B.; Jafri, M.Z.M.; San, L.H. Mangrove mapping in Penang Island by using artificial neural network technique. In Proceedings of the 2011 IEEE Conference on Open Systems ICOS 2011, Langkawi, Malaysia, 25–28 September 2011; pp. 251–255. [Google Scholar]
- Chun, B.B.; Mat Jafri, M.Z.; San, L.H. Comparison of remote sensing approach for mangrove mapping over Penang Island. In Proceedings of the 4th International Conference on Computer and Communication Engineering 2012 (ICCCE 2012), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 258–262. [Google Scholar]
- Hutchinson, C.F. Techniques for combining Landsat and ancillary data for digital classification improvement. Photogramm. Eng. Remote Sens. 1982, 48, 123–130. [Google Scholar]
- Alganci, U.; Besol, B.; Sertel, E. Accuracy assessment of different digital surface models. ISPRS Int. J. Geo-Inf. 2018, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Fatoyinbo, T.E. TanDEM-X Pol-InSAR Inversion for Mangrove Canopy Height Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3608–3618. [Google Scholar] [CrossRef]
- Wohlfart, C.; Winkler, K.; Wendleder, A.; Roth, A. TerraSAR-X and wetlands: A review. Remote Sens. 2018, 10, 916. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.M.; Behera, M.D.; Paramanik, S. Canopy height estimation using sentinel series images through machine learning models in a Mangrove Forest. Remote Sens. 2020, 12, 1519. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Saw, A.A.; Kanzaki, M. Local Livelihoods and Encroachment into a Mangrove Forest Reserve: A Case Study of the Wunbaik Reserved Mangrove Forest, Myanmar. Procedia Environ. Sci. 2015, 28, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Win, M. The Mangrove Vegetation of Wubaik Reserved Forest; FAO-UN, Seed Division Compound, Insein Road, Yangon, Myanmar Publications: Yangon, Myanmar, 2011; Volume iii, 191p. [Google Scholar]
- Congedo, L. Semi-Automatic Classification Plugin Documentation; Lazio: Rome, Italy, 2016. [Google Scholar]
- Hościło, A.; Lewandowska, A. Mapping Forest Type and Tree Species on a Regional Scale Using Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 929. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency. SENTINEL-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of spectral, spatial, and radiometric characteristics on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61, 139–149. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Datta Majumdar, S.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. Int. J. Digit. Earth 2019, 12, 500–524. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, C.W. Forest canopy height estimation using multiplatform remote sensing dataset. J. Sens. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning; Gewerbestrasse 11: Cham, Switzerland, 2018; ISBN 9783319944623. [Google Scholar]
- Grave, E.; Joulin, A.; Cissé, M.; Grangier, D.; Jégou, H. Efficient softmax approximation for GPUs. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017; Volume 3, pp. 2111–2119. [Google Scholar]
- Uniqtech Understand the Softmax Function in Minutes—Data Science Bootcamp—Medium. Available online: https://medium.com/data-science-bootcamp/understand-the-softmax-function-in-minutes-f3a59641e86d (accessed on 15 June 2020).
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. Int. J. Geosci. 2017, 8, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques. Photogramm. Eng. Remote Sens. 1983, 49, 1671–1678. [Google Scholar]
- Cohen, J. A Coefficient of Aggrement for Normal Scales. Curr. Contents 1960, 20, 37–46. [Google Scholar]
- Gandhi, S.; Jones, T.G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Afify, H.A. Evaluation of change detection techniques for monitoring land-cover changes: A case study in new Burg El-Arab area. Alex. Eng. J. 2011, 50, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Glen, S. Z Test: Definition & Two Proportion Z-Test—Statistics How To. Available online: https://www.statisticshowto.com/z-test/ (accessed on 19 December 2020).
- Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; Nguyen Thanh, H. The integration of spectral analyses of Landsat ETM+ with the DEM data for mapping mangrove forests. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 1914–1917. [Google Scholar]
- Alsaaideh, B.; Al-Hanbali, A.; Tateishi, R.; Kobayashi, T.; Hoan, N.T. Mangrove Forests Mapping in the Southern Part of Japan Using Landsat ETM+ with DEM. J. Geogr. Inf. Syst. 2013, 5, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, J. Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties. Int. J. Remote Sens. 2011, 32, 6765–6781. [Google Scholar] [CrossRef]
- Liu, X.; Bo, Y. Object-based crop species classification based on the combination of airborne hyperspectral images and LiDAR data. Remote Sens. 2015, 7, 922–950. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Cao, C.; Dang, Y.; Ni, X. Mapping forest canopy height in mountainous areas using ZiYuan-3 stereo images and Landsat data. Forests 2019, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Brownlee, J. How to Configure the Number of Layers and Nodes in a Neural Network. Available online: https://machinelearningmastery.com/how-to-configure-the-number-of-layers-and-nodes-in-a-neural-network/ (accessed on 1 July 2020).
- Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 2018, 95, 43–56. [Google Scholar] [CrossRef]
- Fchollet Transfer Learning & Fine-Tuning. Available online: https://keras.io/guides/transfer_learning/ (accessed on 19 June 2020).
- Arrigoni, A. Transfer Learning in Tensorflow (VGG19 on CIFAR-10): Part 1. Available online: https://towardsdatascience.com/transfer-learning-in-tensorflow-9e4f7eae3bb4 (accessed on 19 June 2020).
- Guo, Z. Identification of Buildings in Rural Environment Based on Convolutional Neural Networks. Master’s Thesis, The University of Tokyo, Tokyo, Japan, 2017. [Google Scholar]
- De Alban, J.D.T.; Jamaludin, J.; Wong, D.d.W.; Than, M.M.; Webb, E.L. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Gaw, L.Y.F.; Linkie, M.; Friess, D.A. Mangrove forest dynamics in Tanintharyi, Myanmar from 1989–2014, and the role of future economic and political developments. Singap. J. Trop. Geogr. 2018, 39, 224–243. [Google Scholar] [CrossRef]
- Saw, A.A. Deforestation and Local Livelihood Strategy: A Case of Encroachment into the Wunbaik Reserved Mangrove Forest, Myanmar. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2017. [Google Scholar]
Sr | Land-Use Types | Number of Points |
---|---|---|
1 | Water | 20 |
2 | Paddy field | 6 |
3 | Shrimp pond | 13 |
4 | Natural mangrove | 30 |
5 | Mangrove plantation | 5 |
6 | Other vegetation | 6 |
Total | 80 |
Date of Acquisition | Tile Number | Cloud Coverage | Processing Level | Bands Used | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|---|---|---|
21 January 2020 | T46QEG | 0 | Level-2 A | Band 2 | 490 | 10 |
23 December 2015 | T46QEG | 0 | Level-1 C | Band 3 | 560 | 10 |
Band 4 | 665 | 10 | ||||
Band 5 | 705 | 20 | ||||
Band 6 | 740 | 20 | ||||
Band 7 | 783 | 20 | ||||
Band 8 | 842 | 10 | ||||
Band 8A | 865 | 20 | ||||
Band 11 | 1910 | 20 | ||||
Band 12 | 2190 | 20 |
Experiment | Combination of Input Features | Overall Accuracy |
---|---|---|
1 | 10 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12) of Sentinel-2 image | 56.39% |
2 | 10 bands, NDVI, NDWI | 93.43% |
3 | 10 bands, NDVI, NDWI, CMRI | 94.02% |
4 | 10 bands, NDVI, NDWI, MERIT | 95.49% |
5 | 10 bands, MERIT | 71.05% |
6 | 10 bands, NDVI, NDWI, MERIT, CHM | 95.85% |
7 | 10 bands, NDVI, NDWI, MERIT, SRTM | 95.79% |
8 | 10 bands, NDVI, NDWI, SRTM, CHM | 93.71% |
9 | 10 bands, NDVI, NDWI, MERIT, SRTM, CHM | 93.73% |
10 | 10 bands, NDVI, NDWI, CHM | 95.33% |
11 | 10 bands, MERIT, CMRI | 72.00% |
12 | 10 bands, NDVI, NDWI, CMRI, MERIT | 95.70% |
13 | 10 bands, NDVI, NDWI, CMRI, MERIT, CHM | 95.81% |
14 | NDVI, NDWI, MERIT, CHM | 95.76% |
15 | 4 selected bands (B2, B3, B4, B8), NDVI, NDWI, MERIT, CHM | 95.65% |
Models | Transfer Learning Dataset | Accuracy for Whole Dataset (%) | |
---|---|---|---|
Accuracy (%) | Training Time per Epoch | ||
Original model | 72.59 | - | 94.5 |
T0 (Model fixed layer 0) | 96.09 | 42 s | 93.8 |
T1 (Model fixed layer 1) | 95.83 | 33 s | 95.10 |
T2 (Model fixed layer 2) | 96.07 | 40 s | 93.00 |
T01 (Model fixed layer 0 and 1) | 95.57 | 38 s | 94.00 |
T02 (Model fixed layer 0 and 2) | 96.04 | 38 s | 96.20 |
T12 (Model fixed layer 1 and 2) | 95.77 | 32 s | 97.20 |
Year | Accuracy | Kappa | Precision (1 M) | Precision (1 NM) | Recall (M) | Recall (NM) | F1 Score (M) | F1 Score (NM) |
---|---|---|---|---|---|---|---|---|
2020 | 95.98 | 0.92 | 0.95 | 0.97 | 0.96 | 0.96 | 0.96 | 0.96 |
2015 | 97.20 | 0.94 | 0.98 | 0.96 | 0.98 | 0.97 | 0.97 | 0.97 |
Abandoned Sites | Site_Area (km2) | Recovering Mangrove Area (km2) | Recovering (%) |
---|---|---|---|
Site 1 | 1.02 | 0.5 | 49.02 |
Site 2 | 0.59 | 0.33 | 55.93 |
Site 3 | 0.14 | 0.07 | 50.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maung, W.S.; Sasaki, J. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens. 2021, 13, 52. https://doi.org/10.3390/rs13010052
Maung WS, Sasaki J. Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sensing. 2021; 13(1):52. https://doi.org/10.3390/rs13010052
Chicago/Turabian StyleMaung, Win Sithu, and Jun Sasaki. 2021. "Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar" Remote Sensing 13, no. 1: 52. https://doi.org/10.3390/rs13010052
APA StyleMaung, W. S., & Sasaki, J. (2021). Assessing the Natural Recovery of Mangroves after Human Disturbance Using Neural Network Classification and Sentinel-2 Imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sensing, 13(1), 52. https://doi.org/10.3390/rs13010052