Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique
Abstract
:1. Introduction
2. Related Work
2.1. BIM-to-GIS Data Conversion
2.2. IFC-to-CityGML Conversion
2.3. IFC-to-Shapefile Conversion
2.4. Computer Graphics Technique in BIM-to-GIS Data Integration
3. Materials and Methods
3.1. Investigating OCCT
3.1.1. Computer Graphics and OCCT
3.1.2. Extracting and Converting IFC Geometry using OCCT
3.1.3. From Primitive Triangulation Elements to OCCT B-Rep
3.2. Integrating OCCT into IFC-to-Shapefile Conversion
3.2.1. Subtypes of B-Rep
3.2.2. Converting OCCT B-Rep to Shapefile B-Rep
3.3. Semantic Information Transferring
3.4. An Overview of the Proposed Approch for IFC-to-Shapefile Conversion
3.5. Data
4. Results
5. Discussion
5.1. Comparing OCCT-OSA with Previous Methods
5.1.1. Comparison between OCCT-OSA and OSA
5.1.2. Comparison between OCCT-OSA and DIA/FME
5.1.3. Comparative Summary for Methods in IFC-to-Shapefile Conversion
5.2. Validation Using Other Models
5.3. Contributions, Implications, Limitations, and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Python Codes for Retrieving Essential Attributes
def findSpatialStrcture(buildingElement): #determine the type of buildingElement if buildingElement.is_a() == ‘IfcSpace’: firstStructure = buildingElement.Decomposes[0].RelatingObject elif buildingElement.is_a() == ‘IfcSite’: firstStructure = buildingElement else: firstStructure = buildingElement.ContainedInStructure[0].RelatingStructure if firstStructure.is_a() == ‘IfcBuildingStorey’: storeyEle = findStoreyLevel(firstStructure) storeyName = firstStructure.Name bldName = firstStructure.Decomposes[0]. RelatingObject.Name.encode(‘ascii’,‘ignore’) siteName = firstStructure.Decomposes[0]. RelatingObject.Decomposes[0].RelatingObject.Name elif firstStructure.is_a() == ‘IfcBuilding’: storeyEle = None storeyName = None bldName = firstStructure.Name siteName = firstStructure.Decomposes[0].RelatingObject.Name elif firstStructure.is_a() == ‘IfcSite’: storeyEle = None storeyName = None bldName = None siteName = firstStructure.Name result = [storeyEle, storeyName, bldName, siteName] return result |
References
- Ketzler, B.; Naserentin, V.; Latino, F.; Zangelidis, C.; Thuvander, L.; Logg, A. Digital twins for cities: A state of the art review. Built Environ. 2020, 46, 547–573. [Google Scholar] [CrossRef]
- Li, H.; Chan, G.; Wong, J.K.W.; Skitmore, M. Real-time locating systems applications in construction. Autom. Constr. 2016, 63, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Biljecki, F.; Stoter, J.; Ledoux, H.; Zlatanova, S.; Çöltekin, A. Applications of 3D city models: State of the art review. ISPRS Int. J. Geo Inf. 2015, 4, 2842–2889. [Google Scholar] [CrossRef] [Green Version]
- Shirowzhan, S.; Tan, W.; Sepasgozar, S.M. Digital twin and CyberGIS for improving connectivity and measuring the impact of infrastructure construction planning in smart cities. Int. J. Geo Inf. 2020, 9, 240. [Google Scholar] [CrossRef]
- El-Hallaq, M.A.; Alastal, A.I.; Salha, R.A. Enhancing sustainable development through web based 3D smart city model using GIS and BIM. Case study: Sheikh hamad city. J. Geogr. Inf. Syst. 2019, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, S.; Fan, L.; Suzuki, Y. Assessment of urban energy performance through integration of BIM and GIS for smart city planning. Procedia Eng. 2017, 180, 1462–1472. [Google Scholar] [CrossRef]
- Zhu, J.; Wright, G.; Wang, J.; Wang, X. A critical review on the integration of geographic information system and building information modelling at the data level. ISPRS Int. J. Geo Inf. 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A framework for a microscale flood damage assessment and visualization for a building using BIM–GIS integration. Int. J. Digit. Earth 2016, 9, 363–386. [Google Scholar] [CrossRef]
- Niu, S.; Pan, W.; Zhao, Y. A BIM-GIS integrated web-based visualization system for low energy building design. Procedia Eng. 2015, 121, 2184–2192. [Google Scholar] [CrossRef] [Green Version]
- Isikdag, U.; Underwood, J.; Aouad, G. An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Adv. Eng. Inform. 2008, 22, 504–519. [Google Scholar] [CrossRef]
- Irizarry, J.; Karan, E.P. Optimizing location of tower cranes on construction sites through GIS and BIM integration. J. Inf. Technol. Constr. 2012, 17, 351–366. [Google Scholar]
- Irizarry, J.; Karan, E.P.; Jalaei, F. Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Autom. Constr. 2013, 31, 241–254. [Google Scholar] [CrossRef]
- Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New functions open up new applications. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Ren, Y. Integrated application of BIM and GIS: An overview. Procedia Eng. 2017, 196, 1072–1079. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Sepasgozar, S.M.; Edwards, D.J.; Li, H.; Wang, C. BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Autom. Constr. 2020, 112, 103086. [Google Scholar] [CrossRef]
- Arroyo Ohori, K.; Diakité, A.; Krijnen, T.; Ledoux, H.; Stoter, J. Processing BIM and GIS models in practice: Experiences and recommendations from a GeoBIM project in the Netherlands. ISPRS Int. J. Geo Inf. 2018, 7, 311. [Google Scholar] [CrossRef] [Green Version]
- Hijazi, I.; Donaubauer, A.; Kolbe, T. BIM-GIS integration as dedicated and independent course for geoinformatics students: Merits, challenges, and ways forward. ISPRS Int. J. Geo Inf. 2018, 7, 319. [Google Scholar] [CrossRef] [Green Version]
- Acharya, D.; Khoshelham, K.; Winter, S. BIM-PoseNet: Indoor camera localisation using a 3D indoor model and deep learning from synthetic images. ISPRS J. Photogramm. Remote Sens. 2019, 150, 245–258. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S.; Underwood, J. A BIM-Oriented Model for supporting indoor navigation requirements. Comput. Environ. Urban Syst. 2013, 41, 112–123. [Google Scholar] [CrossRef]
- Tashakkori, H.; Rajabifard, A.; Kalantari, M. A new 3D indoor/outdoor spatial model for indoor emergency response facilitation. Build. Environ. 2015, 89, 170–182. [Google Scholar] [CrossRef]
- Teo, T.-A.; Cho, K.-H. BIM-oriented indoor network model for indoor and outdoor combined route planning. Adv. Eng. Inform. 2016, 30, 268–282. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, J.C.; Anumba, C. A framework for 3D traffic noise mapping using data from BIM and GIS integration. Struct. Infrastruct. Eng. 2016, 12, 1267–1280. [Google Scholar] [CrossRef]
- Foley, J.D.; Van Dam, A. Fundamentals of Interactive Computer Graphics; Addison-Wesley Publishing Company: Menlo Park, CA, USA, 1982. [Google Scholar]
- Zhu, J.; Wu, P.; Chen, M.; Kim, M.J.; Wang, X.; Fang, T. Automatically processing IFC clipping representation for BIM and GIS integration at the process level. Appl. Sci. 2020, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Donkers, S.; Ledoux, H.; Zhao, J.; Stoter, J. Automatic conversion of IFC datasets to geometrically and semantically correct CityGML LOD3 buildings. Trans. GIS 2016, 20, 547–569. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Tan, Y.; Wang, X.; Wu, P. BIM/GIS integration for web GIS-based bridge management. Ann. GIS 2021, 27, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Cheng, J.C.; Anumba, C. Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Autom. Constr. 2016, 67, 1–21. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Chen, M.; Wu, P.; Kim, M.J. Integration of BIM and GIS: IFC geometry transformation to shapefile using enhanced open-source approach. Autom. Constr. 2019, 106, 1–18. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J. Integration of BIM and GIS: Geometry from IFC to shapefile using open-source technology. Autom. Constr. 2019, 102, 105–119. [Google Scholar] [CrossRef]
- Zhu, J.; Tan, Y.; Wang, J.; Wang, X. An economical approach to geo-referencing 3D model for integration of BIM and GIS. In Proceedings of the International Conference on Innovative Production and Construction (IPC 2017), Perth, Australia, 30 November–1 December 2017. [Google Scholar]
- Diakite, A.A.; Zlatanova, S. Automatic geo-referencing of BIM in GIS environments using building footprints. Comput. Environ. Urban Syst. 2020, 80, 101453. [Google Scholar] [CrossRef]
- Kang, T.W.; Hong, C.H. IFC-CityGML LOD mapping automation using multiprocessing-based screen-buffer scanning including mapping rule. KSCE J. Civ. Eng. 2018, 22, 373–383. [Google Scholar] [CrossRef]
- Kang, T.W.; Hong, C.H. A study on software architecture for effective BIM/GIS-based facility management data integration. Autom. Constr. 2015, 54, 25–38. [Google Scholar] [CrossRef]
- Isikdag, U.; Zlatanova, S. Towards defining a framework for automatic generation of buildings in CityGML using building Information Models. In 3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 79–96. [Google Scholar]
- Karan, E.P.; Irizarry, J. Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Autom. Constr. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- El-Mekawy, M.; Östman, A.; Shahzad, K. Towards interoperating CityGML and IFC building models: A unified model based approach. In Advances in 3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2011; pp. 73–93. [Google Scholar]
- De Laat, R.; Van Berlo, L. Integration of BIM and GIS: The development of the CityGML GeoBIM extension. In Advances in 3D Geo-Information Sciences; Springer: Berlin/Heidelberg, Germany, 2011; pp. 211–225. [Google Scholar]
- Knoth, L.; Scholz, J.; Strobl, J.; Mittlböck, M.; Vockner, B.; Atzl, C.; Rajabifard, A.; Atazadeh, B. Cross-domain building models—A step towards interoperability. ISPRS Int. J. Geo Inf. 2018, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- LaCourse, D.E. Handbook of Solid Modeling; McGraw-Hill: New York, NY, USA, 1995. [Google Scholar]
- Hijazi, I.; Ehlers, M.; Zlatanova, S.; Becker, T.; van Berlo, L. Initial investigations for modeling interior Utilities within 3D Geo Context: Transforming IFC-interior utility to CityGML/UtilityNetworkADE. In Advances in 3D Geo-Information Sciences; Kolbe, T.H., König, G., Nagel, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 95–113. [Google Scholar]
- Zhang, C.; Liu, Y.; Lin, C.; Zhou, L.; Lin, B.; Che, M. Development of a CityGML application domain extension for simulating the building construction process. ISPRS Int. J. Geo Inf. 2019, 8, 576. [Google Scholar] [CrossRef] [Green Version]
- Stouffs, R.; Tauscher, H.; Biljecki, F. Achieving complete and near-lossless conversion from IFC to CityGML. Isprs Int. J. Geo Inf. 2018, 7, 355. [Google Scholar] [CrossRef] [Green Version]
- ESRI. The Multipatch Geometry Type an Esri White Paper. Available online: https://www.esri.com/library/whitepapers/pdfs/multipatch-geometry-type.pdf (accessed on 31 July 2020).
- Landgate. Landgate Western Australia’s Land Information Authority. Available online: https://www0.landgate.wa.gov.au/ (accessed on 14 February 2021).
- Australian Government. Australian Government Data.Gov.Au. Available online: https://data.gov.au/ (accessed on 14 February 2021).
- Safe Software. Powering the Flow of Data. Available online: https://www.safe.com/ (accessed on 4 October 2020).
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A data model for integrating GIS and BIM for assessment and 3D visualisation of flood damage to building. In Proceedings of the Locate, Brisbane, Australia, 10–12 March 2015; pp. 78–89. [Google Scholar]
- Amirebrahimi, S.; Rajabifard, A.; Mendis, P.; Ngo, T. A BIM-GIS integration method in support of the assessment and 3D visualisation of flood damage to a building. J. Spat. Sci. 2016, 61, 317–350. [Google Scholar] [CrossRef]
- Boyes, G.; Ellul, C.; Irwin, D. Exploring BIM for operational integrated asset management-a preliminary study utilising real-world infrastructure data. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 26–27 October 2017; pp. 49–56. [Google Scholar]
- Zhu, J.; Wang, P.; Wang, X. An assessment of paths for transforming IFC to shapefile for integration of BIM and GIS. In Proceedings of the 26th International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–5. [Google Scholar]
- Isikdag, U. Towards the Implementation of Building Information Models in Geospatial Context; University of Salford: Salford, UK, 2006. [Google Scholar]
- Wikipedia. Tessellation (Computer Graphics). Available online: https://en.wikipedia.org/wiki/Tessellation_(computer_graphics) (accessed on 14 February 2021).
- Zhou, X.; Zhao, J.; Wang, J.; Guo, M.; Liu, J.; Shi, H. Towards product-level parallel computing of large-scale building information modeling data using graph theory. Build. Environ. 2020, 169, 106558. [Google Scholar] [CrossRef]
- Open CASCADE. Be Free with Your 3D Modeling Kernel. Available online: https://www.opencascade.com/content/open-source-core-technology (accessed on 25 October 2020).
- Bannat, A.; Bautze, T.; Beetz, M.; Blume, J.; Diepold, K.; Ertelt, C.; Geiger, F.; Gmeiner, T.; Gyger, T.; Knoll, A. Artificial cognition in production systems. IEEE Trans. Autom. Sci. Eng. 2010, 8, 148–174. [Google Scholar] [CrossRef] [Green Version]
- Ziemer, S.; Stenz, G. The case for open source software in aeronautics. Aircr. Eng. Aerosp. Technol. 2012, 84, 133–139. [Google Scholar] [CrossRef]
- Bedaka, A.K.; Lin, C.-Y. CAD-based robot path planning and simulation using OPEN CASCADE. Procedia Comput. Sci. 2018, 133, 779–785. [Google Scholar] [CrossRef]
- Ma, L.; Sacks, R.; Zeibak-Shini, R.; Aryal, A.; Filin, S. Preparation of synthetic as-damaged models for post-earthquake BIM reconstruction research. J. Comput. Civ. Eng. 2015, 30, 04015032. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, L.; Li, H.; Lin, Y.-H.; Yin, S. Combining IFC and 3D tiles to create 3D visualization for building information modeling. Autom. Constr. 2020, 109, 102995. [Google Scholar] [CrossRef]
- GitHub. OpensourceBIM/IfcOpenShell-BIMserver-Plugin. Available online: https://github.com/opensourceBIM/IfcOpenShell-BIMserver-plugin (accessed on 17 February 2021).
- Chen, Y.; Shooraj, E.; Rajabifard, A.; Sabri, S. From IFC to 3D tiles: An integrated open-source solution for visualising BIMs on cesium. ISPRS Int. J. Geo Inf. 2018, 7, 393. [Google Scholar] [CrossRef] [Green Version]
- Open CASCADE. Open CASCADE Technology 7.2.0. Available online: https://old.opencascade.com/doc/occt-7.2.0/refman/html/index.html (accessed on 16 February 2021).
- Eck, D.J. Introduction to Computer Graphics. Available online: http://math.hws.edu/graphicsbook/ (accessed on 8 September 2020).
- Zhang, S.; Hou, D.; Wang, C.; Pan, F.; Yan, L. Integrating and managing BIM in 3D web-based GIS for hydraulic and hydropower engineering projects. Autom. Constr. 2020, 112, 103114. [Google Scholar] [CrossRef]
- Sacks, R.; Eastma, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- BuildingSMART. Available online: https://www.buildingsmart.org/ (accessed on 30 September 2020).
- BuildingSMART. IFC Specifications Database. Available online: https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/ (accessed on 1 May 2020).
- ESRI. The Multipatch Geometry Type. Available online: https://support.esri.com/en/white-paper/1483 (accessed on 16 February 2021).
- ESRI. ESRI Shapefile Technical Description. Available online: https://support.esri.com/en/white-paper/279 (accessed on 16 February 2021).
- Zhang, L.; El-Gohary, N.M. Automated IFC-based building information modelling and extraction for supporting value analysis of buildings. Int. J. Constr. Manag. 2018, 20, 269–288. [Google Scholar] [CrossRef]
- Rasmussen, M.H.; Pauwels, P.; Lefrançois, M.; Schneider, G.F. Building Topology Ontology. Available online: https://w3c-lbd-cg.github.io/bot/ (accessed on 13 February 2021).
- IfcWiki. KIT IFC Examples. Available online: http://www.ifcwiki.org/index.php?title=KIT_IFC_Examples (accessed on 25 January 2021).
- KIO Technology. KIT: FJK-Project-Final. Available online: http://openifcmodel.cs.auckland.ac.nz/Model/Details/123 (accessed on 27 August 2020).
- Kreveld, M.V.; Nievergelt, J.; Roos, T.; Widmayer, P. Algorithmic Foundations of Geographic Information Systems; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Schirra, S. Precision and robustness in geometric computations. In Algorithmic Foundations of Geographic Information Systems; Kreveld, M.V., Nievergelt, J., Roos, T., Widmayer, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Safe Software. FME—The Simple Solution for Complex Integration. Available online: https://www.safe.com/ (accessed on 12 February 2021).
- Xue, F.; Lu, W.; Chen, Z.; Webster, C.J. From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles. ISPRS J. Photogramm. Remote Sens. 2020, 167, 418–431. [Google Scholar] [CrossRef]
- Uchida, T.; Hasegawa, K.; Li, L.; Adachi, M.; Yamaguchi, H.; Thufail, F.I.; Riyanto, S.; Okamoto, A.; Tanaka, S. Noise-robust transparent visualization of large-scale point clouds acquired by laser scanning. ISPRS J. Photogramm. Remote Sens. 2020, 161, 124–134. [Google Scholar] [CrossRef]
- Kim, J.-S.; Li, K.-J. Simplification of geometric objects in an indoor space. ISPRS J. Photogramm. Remote Sens. 2019, 147, 146–162. [Google Scholar] [CrossRef]
General Tasks | Specific Tasks | ||
---|---|---|---|
IFC-to-CityGML | IFC-to-Shapefile | ||
Geometry | Representation conversion | Converting solid models to surface models (difficult): - Converting B-Rep [25] - Converting swept solid [25,27] - Converting CSG/Clipping [19,25] | Converting solid models to solid models: - Converting B-Rep [28] - Converting swept solid [10,28,29] - Converting CSG/Clipping [10,24,28] |
Coordinate transformation | Needed | Needed | |
Geo-referencing | Needed, if to be integrated with other spatial data | Needed, if to be integrated with other spatial data [16,30,31] | |
Model simplification | Needed, as Level of Detail (LoD) is defined - LoD1 [27,32,33,34] - LoD2 [27,32,33,34] - LoD3 [25,27,32,34] - LoD4 [27,32,34] | Optional | |
Semantics | Semantics transfer | Class mapping needed, as CityGML is a semantic data schema [27,34,35,36,37,38] | Semantics extraction needed, as shapefile is not a semantic data schema |
Raw Triangulation Elements | Interpreted Triangulation Elements | |
---|---|---|
Shape.geometry.verts | ||
Shape.geometry.edges | ||
Shape.geometry.faces |
B-Rep Sub-Type | B-Rep Description |
---|---|
Type 1 | |
Type 2 | |
Type 3 |
def OCCTToShapefile(OCCT_shape, objectPlacement): parts = [[] raw_verts = OCCT_shape.geometry.verts raw_faces = OCCT_shape.geometry.faces points = [raw_verts[i:i+3] for i in range(0, len(raw_verts),3)] faces = [raw_faces[i:i+3] for i in range(0,len(raw_faces),3)] points = keepTransform(points, objectPlacement) points = np.mat(points).tolist() for face in faces: ring = [points[face[2]], points[face[1]], points[face[0]], points[face[2]]] parts.append(ring) return parts |
IFC Class | Quantity of Components | |||
---|---|---|---|---|
House 1 | House 2 | Institute | Smiley | |
IfcBeam | 4 | 39 | - | 10 |
IfcBuildingElementProxy | - | 8 | - | - |
IfcColumn | - | 10 | 2 | 20 |
IfcDoor | 5 | 14 | 77 | 170 |
IfcMember | 42 | - | - | - |
IfcRailing | 2 | 6 | 12 | 120 |
IfcRoof | - | 1 | - | - |
IfcSlab | 4 | 8 | 26 | 120 |
IfcStair | 1 | 4 | 4 | 30 |
IfcWall | - | 57 | - | 281 |
IfcWallStandardCase | 13 | 46 | 121 | 270 |
IfcWindow | 11 | 25 | 206 | 80 |
82 | 172 | 448 | 831 |
House 1 | House 2 | Smiley | Institute | |
---|---|---|---|---|
Time (s) | 8.5 | 4.6 | 55.2 | 17.9 |
Size (KB) | 2878.2 | 1640.6 | 24097.2 | 5318.0 |
IFC Class | House 1 | House 2 | Institute | Smiley | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | Converted | Original | Converted | |
IfcBeam | 4 | 4 | 39 | 39 | - | - | 10 | 10 |
IfcBuildingElementProxy | - | - | 8 | 8 | - | - | - | - |
IfcColumn | - | - | 10 | 10 | 2 | 2 | 20 | 20 |
IfcDoor | 5 | 5 | 14 | 14 | 77 | 77 | 170 | 170 |
IfcMember | 42 | 42 | - | - | - | - | - | - |
IfcRailing | 2 | 2 | 6 | 6 | 12 | 12 | 120 | 120 |
IfcRoof | - | - | 1 | 1 | - | - | - | - |
IfcSlab | 4 | 4 | 8 | 8 | 26 | 26 | 120 | 120 |
IfcStair | 1 | 1 | 4 | 4 | 4 | 4 | 30 | 30 |
IfcWall | - | - | 57 | 57 | - | - | 281 | 281 |
IfcWallStandardCase | 13 | 13 | 46 | 46 | 121 | 121 | 270 | 270 |
IfcWindow | 11 | 11 | 25 | 25 | 206 | 206 | 80 | 80 |
Total quantity | 82 | 82 | 172 | 172 | 448 | 448 | 831 | 831 |
Processing Time (Seconds) | |||||
---|---|---|---|---|---|
House 1 | House 2 | Smiley | Institute | Average | |
OSA (a) | 25.2 | 40.7 | 245.9 | 90.5 | - |
OCCT-OSA (b) | 8.5 | 4.6 | 55.2 | 17.9 | - |
Improvement (a-b)/b | 196% | 785% | 346% | 406% | 433% |
File Size (KB) | |||||
---|---|---|---|---|---|
House 1 | House 2 | Smiley | Institute | Average | |
OSA (a) | 1503.6 | 1120.0 | 14,305.5 | 3206.4 | - |
OCCT-OSA (b) | 2878.2 | 1640.6 | 24,097.2 | 5318.0 | - |
Comparison (b-a)/a | 91% | 46% | 68% | 66% | 68% |
Processing Time (Seconds) | ||||
---|---|---|---|---|
House 1 | House 2 | Smiley | Institute | |
DIA/FME (a) | 25.4 | 25.9 | 118.1 | 136.7 |
OCCT-OSA (b) | 8.5 | 4.6 | 55.2 | 17.9 |
Improvement (a-b)/b | 199% | 463% | 114% | 664% |
Geometry Conversion | Semantic Information Transfer | Handling Precision Problem | Automatic | |||
---|---|---|---|---|---|---|
B-Rep | Swept Solid | CSG/Clipping | ||||
FME [76], DIA | √ | √ | √* | √* | NA | √ |
Isikdag [51] | NA | √ | √* | √* | NA | √* |
OSA [24,28,29] | √ | √ | √ | √* | X | √* |
OCCT-OSA | √ | √ | √ | √* | √ | √ |
Model | File Size | Number of Components | Modeling Precision | Time (Seconds) | Data Source | |
---|---|---|---|---|---|---|
1 | bridge1.ifc | 70.0 KB | 61 | 1 × 10−4 | 0.6 | Project |
2 | bridge2.ifc | 845.0 KB | 609 | 1 × 10−5 | 8.7 | Project |
3 | T18001_Zonghelou.ifc | 2.6 MB | 253 | 1 × 10−2 | 7.3 | Project |
4 | 20160125OTC-Conference-Center.ifc | 226.6 MB | 1728 | 1 × 10−4 | 525.8 | OIMR |
5 | 20200109rac_advanced_sample_project.ifc | 103.0 MB | 925 | 1 × 10−2 | 244.5 | OIMR |
6 | 20191126AZUMA9.ifc | 20.3 MB | 96 | 1 × 10−5 | 32.0 | OIMR |
7 | 20190228201620_Svaleveien_8_Hus_A.ifc | 17.3 MB | 120 | 1 × 10−5 | 38.6 | OIMR |
8 | 20160125Autodesk_Hospital_Parking.ifc | 14.3 MB | 1085 | 1 × 10−4 | 37.4 | OIMR |
9 | 20180731Dubal-Herrera-limpio.ifc | 349.1 MB | 1906 | 1 × 10−5 | 967.6 | OIMR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. https://doi.org/10.3390/rs13101889
Zhu J, Wu P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sensing. 2021; 13(10):1889. https://doi.org/10.3390/rs13101889
Chicago/Turabian StyleZhu, Junxiang, and Peng Wu. 2021. "Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique" Remote Sensing 13, no. 10: 1889. https://doi.org/10.3390/rs13101889
APA StyleZhu, J., & Wu, P. (2021). Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sensing, 13(10), 1889. https://doi.org/10.3390/rs13101889