Ocean–Atmosphere Interactions during Hurricanes Marco and Laura (2020)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Satellite Observations
2.1.2. Ocean Models
2.2. Methodology
3. Results
3.1. Storm Analysis
3.2. Enthalpy and Air–Sea Interactions
3.3. Loop Current Interactions
3.4. Biophysical Ocean Dynamics
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaimes, B.; Shay, L.K.; Uhlhorn, E.; Cook, T.M.; Brewster, J.; Halliwell, G.; Black, P.G. Influence of loop current ocean heat content on Hurricanes Katrina, Rita, and Wilma. In Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, 24–28 April 2006. [Google Scholar]
- Prasad, T.G.; Hogan, P.J. Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM. J. Geophys. Res. Space Phys. 2007, 112, 04013. [Google Scholar] [CrossRef] [Green Version]
- Leipper, D.F.; Volgenau, D. Hurricane Heat Potential of the Gulf of Mexico. J. Phys. Oceanogr. 1972, 2, 218–224. [Google Scholar] [CrossRef]
- Gierach, M.M.; Subrahmanyam, B. Biophysical responses of the upper ocean to major Gulf of Mexico hurricanes in 2005. J. Geophys. Res. Space Phys. 2008, 113, 04029. [Google Scholar] [CrossRef]
- Gierach, M.M.; Subrahmanyam, B. Satellite Data Analysis of the Upper Ocean Response to Hurricanes Katrina and Rita (2005) in the Gulf of Mexico. IEEE Geosci. Remote. Sens. Lett. 2007, 4, 132–136. [Google Scholar] [CrossRef]
- Blake, E.S. The 2017 Atlantic Hurricane Season: Catastrophic Losses and Costs. Weatherwise 2018, 71, 28–37. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Parameswaran, S. Hurricane Harvey Survey Assessment and Lessons Learned. Texas Hurricane Center for Innovative Technology Conference and Exhibition, 2018. Available online: http://hurricane.egr.uh.edu/sites/hurricane.egr.uh.edu/files/files/2018/HURRICANE-HARVEY-SURVEY-ASSESSMENT.pdf (accessed on 14 March 2021).
- Mainelli, M.; DeMaria, M.; Shay, L.K.; Goni, G. Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes. Weather Forecast. 2008, 23, 3–16. [Google Scholar] [CrossRef]
- Morey, S.L.; Bourassa, M.A.; Dukhovskoy, D.S.; O’Brien, J.J. Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dyn. 2006, 56, 594–606. [Google Scholar] [CrossRef]
- Brokaw, R.J.; Subrahmanyam, B.; Morey, S.L. Loop Current and Eddy-Driven Salinity Variability in the Gulf of Mexico. Geophys. Res. Lett. 2019, 46, 5978–5986. [Google Scholar] [CrossRef]
- Alvera-Azcárate, A.; Barth, A.; Weisberg, R.H. The Surface Circulation of the Caribbean Sea and the Gulf of Mexico as Inferred from Satellite Altimetry. J. Phys. Oceanogr. 2009, 39, 640–657. [Google Scholar] [CrossRef] [Green Version]
- Le Hénaff, M.; Kourafalou, V.; Morel, Y.; Srinivasan, A. Simulating the dynamics and intensification of cyclonic Loop Current Frontal Eddies in the Gulf of Mexico. J. Geophys. Res. Space Phys. 2012, 117, C02034. [Google Scholar] [CrossRef]
- Zavala-Hidalgo, J.; Morey, S.L.; O’Brien, J.J.; Zamuido, L. On the Loop Current Eddy shedding variability. Atmósfera 2005, 19, 41–48. [Google Scholar]
- DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Palmen, E. On the formation and structure of tropical hurricanes. Geophysica 1948, 3, 26–38. [Google Scholar]
- Hong, X.; Chang, S.W.; Raman, S.; Shay, L.K.; Hodur, R. The Interaction between Hurricane Opal (1995) and a Warm Core Ring in the Gulf of Mexico. Mon. Weather Rev. 2000, 128, 1347–1365. [Google Scholar] [CrossRef] [Green Version]
- Shay, L.K.; Goni, G.J.; Black, P.G. Effects of a warm oceanic feature on Hurricane Opal. Mon. Weather Rev. 2000, 128, 1366–1383. [Google Scholar] [CrossRef]
- Walker, N.D.; Leben, R.R.; Balasubramanian, S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett. 2005, 32, L18610. [Google Scholar] [CrossRef]
- Huang, J.; Xu, F.; Zhou, K.; Xiu, P.; Lin, Y. Temporal evolution of near-surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific. J. Geophys. Res. Oceans 2017, 122, 6165–6179. [Google Scholar] [CrossRef]
- Hausmann, U.; McGillicuddy, D.J.; Marshall, J. Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth. J. Geophys. Res. Oceans 2017, 122, 617–635. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.J.; Helms, T.A. Extended abstract: Welcome and opening remarks: Convention planning in a time of covid-19, negative oil prices, record hurricane season, and social unrest. GeoGulf Trans. 2020, 70, 345–347. [Google Scholar]
- Oppenheimer, M. As the world burns: Climate change’s dangerous next phase. Foreign Aff. 2020, 34, 34–41. [Google Scholar]
- Rippey, B.; Thoman, R.; Stuefer, M.; Moore, B.; Grimes, J.; Hartl, L.; Halverson, J. Weatherwatch. Weatherwise 2021, 74, 42–57. [Google Scholar] [CrossRef]
- Jafari, N.H.; Chen, Q.; Cadigan, J. Rapid deployment and post-storm reconnaissance of hurricane Laura. Coast. Eng. Proc. 2020, 36, 60. [Google Scholar] [CrossRef]
- Larson, K.M.; Lay, T.; Yamazaki, Y.; Cheung, K.F.; Ye, L.; Williams, S.D.; Davis, J.L. Dynamic Sea Level Variation From GNSS: 2020 Shumagin Earthquake Tsunami Resonance and Hurricane Laura. Geophys. Res. Lett. 2021, 48. [Google Scholar] [CrossRef]
- Ricciardulli, L.; Meissner, T.; Wentz, F. Towards a Climate Data Record of satellite ocean vector winds. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 2067–2069. [Google Scholar]
- Figa-Saldaña, J.; Wilson, J.J.W.; Attema, E.; Gelsthorpe, R.; Drinkwater, M.R.; Stoffelen, A. The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens. 2002, 28, 404–412. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.Y.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.; O’Neill, P.; Spencer, M.; Jackson, T.; Entin, J.; Im, E.; Kellogg, K. The Soil Moisture Active/Passive Mission (SMAP). In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium; Institute of Electrical and Electronics Engineers (IEEE), Boston, MA, USA, 6–11 July 2008; Volume 3, p. III-1. [Google Scholar]
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined Active/Passive Retrievals of Ocean Vector Wind and Sea Surface Salinity With SMAP. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Bian, G.-F.; Nie, G.-Z.; Qiu, X. How well is outer tropical cyclone size represented in the ERA5 reanalysis dataset? Atmos. Res. 2020, 249, 105339. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Roman-Stork, H.L.; Subrahmanyam, B.; Murty, V.S.N. The Role of Salinity in the Southeastern Arabian Sea in Determining Monsoon Onset and Strength. J. Geophys. Res. Oceans 2020, 125. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Gap Filling of Missing Data for VIIRS Global Ocean Color Products Using the DINEOF Method. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 4464–4476. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Barnes, B.B.; Lee, Z. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico. Harmful Algae 2017, 66, 40–46. [Google Scholar] [CrossRef]
- Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol. 2003, 20, 1839–1856. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Nadal, F.; Ducet, N. An Improved Mapping Method of Multisatellite Altimeter Data. J. Atmos. Ocean. Technol. 1998, 15, 522–534. [Google Scholar] [CrossRef]
- Vidard, A.; Bouttier, P.-A.; Vigilant, F. NEMOTAM: Tangent and adjoint models for the ocean modelling platform NEMO. Geosci. Model Dev. 2015, 8, 1245–1257. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Bracco, A.; Cardona, Y.; McWilliams, J.C. Submesoscale circulation in the northern Gulf of Mexico: Surface processes and the impact of the freshwater river input. Ocean Model. 2016, 101, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Foltz, G.R.; McPhaden, M.J. Impact of Barrier Layer Thickness on SST in the Central Tropical North Atlantic. J. Clim. 2009, 22, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.; DesAutels, C.; Holloway, C.; Korty, R. Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci. 2004, 61, 843–858. [Google Scholar] [CrossRef]
- Zehr, R.M. Environmental Vertical Wind Shear with Hurricane Bertha (1996). Weather Forecast. 2003, 18, 345–356. [Google Scholar] [CrossRef]
- Aiyyer, A.R.; Thorncroft, C. Climatology of Vertical Wind Shear over the Tropical Atlantic. J. Clim. 2006, 19, 2969–2983. [Google Scholar] [CrossRef]
- Jaimes, B.; Shay, L.K.; Uhlhorn, E.W. Enthalpy and Momentum Fluxes during Hurricane Earl Relative to Underlying Ocean Features. Mon. Weather. Rev. 2015, 143, 111–131. [Google Scholar] [CrossRef]
- Price, F.J. Upper ocean response to a hurricane. J. Phys. Oceanogr. 1981, 11, 153–175. [Google Scholar] [CrossRef] [Green Version]
- Kara, A.B.; Rochford, P.A.; Hurlburt, H.E. Mixed layer depth variability over the global ocean. J. Geophys. Res. Space Phys. 2003, 108, 3079. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Busalacchi, A.J.; Rothstein, L.M. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J. Geophys. Res. Space Phys. 1994, 99, 20345. [Google Scholar] [CrossRef]
- Mei, W.; Pasquero, C.; Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 2012, 39, L07801. [Google Scholar] [CrossRef] [Green Version]
- Rudzin, J.E.; Shay, L.K.; Johns, W.E. The Influence of the Barrier Layer on SST Response during Tropical Cyclone Wind Forcing Using Idealized Experiments. J. Phys. Oceanogr. 2018, 48, 1471–1478. [Google Scholar] [CrossRef]
- Balaguru, K.; Chang, P.; Saravanan, R.; Leung, L.R.; Xu, Z.; Li, M.; Hsieh, J.-S. Ocean barrier layers’ effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA 2012, 109, 14343–14347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eley, E.N.; Subrahmanyam, B.; Trott, C.B. Ocean–Atmosphere Interactions during Hurricanes Marco and Laura (2020). Remote Sens. 2021, 13, 1932. https://doi.org/10.3390/rs13101932
Eley EN, Subrahmanyam B, Trott CB. Ocean–Atmosphere Interactions during Hurricanes Marco and Laura (2020). Remote Sensing. 2021; 13(10):1932. https://doi.org/10.3390/rs13101932
Chicago/Turabian StyleEley, Emily N., Bulusu Subrahmanyam, and Corinne B. Trott. 2021. "Ocean–Atmosphere Interactions during Hurricanes Marco and Laura (2020)" Remote Sensing 13, no. 10: 1932. https://doi.org/10.3390/rs13101932
APA StyleEley, E. N., Subrahmanyam, B., & Trott, C. B. (2021). Ocean–Atmosphere Interactions during Hurricanes Marco and Laura (2020). Remote Sensing, 13(10), 1932. https://doi.org/10.3390/rs13101932