Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data
Abstract
:1. Introduction
2. Nile Delta Geological and Tectonic Settings
3. Data and Methods
3.1. Data
3.1.1. Gravity Data (GOCO06s Model)
3.1.2. Topographic Data
3.1.3. Sediments Thickness Data
3.1.4. Seismic Constraints
3.2. Methodology
3.2.1. Moho Depth Inversion from Gravity
- Data Reduction
- Gravity Inversion for Moho Depth
3.2.2. 2D Modeling with IGMAS+
4. Findings and Results
4.1. Free-Air and Bouguer Anomalies Interpretation
4.2. Crustal Thickness Model and Moho Configuration
4.3. Forward Gravity Modeling
5. Discussion
5.1. Analysis of Results
5.2. Limitations and Uncertainties
5.3. Implications and Significance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haars, C.; Lönsjö, E.; Mogos, B.; Winkelaar, B. The Uncertain Future of the Nile Delta; NASA/GSFC: Greenbelt, MD, USA, 2016; 54p. [CrossRef]
- Stanley, D.J. Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditerranée 2005, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Ducassou, E.; Migeon, S.; Mulder, T.; Murat, A.; Capotondi, L.; Bernasconi, S.M.; Mascle, J. Evolution of the Nile deep-sea turbidite system during the late Quaternary: Influence of climate change on fan sedimentation. Sedimentology 2009, 56, 2061–2090. [Google Scholar] [CrossRef]
- Ross, D.; Uchupi, E. Structure and sedimentary history of northeastern Mediterranean Sea-Nile cone area. AAPG 1977, 872–902. [Google Scholar] [CrossRef]
- Newton, C.S.; Shipp, R.C.; Mosher, D.C.; Wach, G.D. Importance of mass transport complexes in the quaternary development of the Nile Fan, Egypt. In Proceedings of the Paper Presented at the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2004; Volume 3, pp. 1909–1918. [Google Scholar] [CrossRef]
- Reading, H.G.; Richards, M. Turbidite systems in deep-water basin margins classified by grain size and feeder system. Am. Assoc. Pet. Geol. Bull. 1994, 78, 792–822. [Google Scholar] [CrossRef]
- Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Spec. Publ. 1989, 41, 99–127. [Google Scholar] [CrossRef]
- Macgregor, D.S. The development of the Nile drainage system: Integration of onshore and offshore evidence. Pet. Geosci. 2012, 18, 417–431. [Google Scholar] [CrossRef]
- Abdelkareem, M.; Ghoneim, E.; El-Baz, F.; Askalany, M. New insight on paleoriver development in the Nile basin of the eastern Sahara. J. Afr. Earth Sci. 2012, 62, 35–40. [Google Scholar] [CrossRef]
- Faccenna, C.; Glišović, P.; Forte, A.; Becker, T.W.; Garzanti, E.; Sembroni, A.; Gvirtzman, Z. Role of dynamic topography in sustaining the Nile River over 30 million years. Nat. Geosci. 2019, 12, 1012–1017. [Google Scholar] [CrossRef]
- Harms, J.C.; Wray, J.L. Nile Delta. In Geology of Egypt; Said, R., Ed.; A.A.Balkema: Rotterdam, The Netherlands, 1990; pp. 329–344. [Google Scholar]
- Hussein, I.M.; Abd-Allah, A.M.A. Tectonic evolution of the northeastern part of the African continental margin, Egypt. J. Afr. Earth Sci. 2001, 33, 49–68. [Google Scholar] [CrossRef]
- Blenkinsop, T.; Moore, A. Tectonic Geomorphology of Passive Margins and Continental Hinterlands. Treatise Geomorphol. 2013, 5, 71–92. [Google Scholar] [CrossRef]
- Schattner, U.; Ben-Avraham, Z. Transform margin of the northern Levant, eastern Mediterranean: From formation to reactivation. Tectonics 2007, 26. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.H.F.; Dixon, J.E. Introduction: Aspects of the geological evolution of the Eastern Mediterranean. Geol. Soc. Spec. Publ. 1984, 17, 1–74. [Google Scholar] [CrossRef]
- Roberts, D.G.; Bally, A. From rifts to passive margins: A continuum of extension. In Regional Geology and Tectonics: Phanerozoic Rift Systems and Sedimentary Basins; Elsevier: New York, NY, USA, 2012; pp. 19–28. [Google Scholar]
- Scotese, C.R.; Wright, N. PALEOMAP Paleodigital Elevation Models (Paleo-DEMS) for the Phanerozoic PALEOMAP Project. 2018. Available online: https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (accessed on 11 August 2020).
- Dolson, J.C.; Shann, M.V.; Matbouly, S.I.; Hammouda, H.; Rashed, R.M. Egypt in the twenty-first century: Petroleum potential in offshore trends. GeoArabia 2001, 6, 211–230. [Google Scholar]
- May, P.R. The eastern Mediterranean Mesozoic basin: Evolution and oil habitat. Am. Assoc. Pet. Geol. Bull. 1991, 75, 1215–1232. [Google Scholar] [CrossRef]
- Garfunkel, Z. Origin of the Eastern Mediterranean basin: A reevaluation. Tectonophysics 2004, 391, 11–34. [Google Scholar] [CrossRef]
- Garfunkel, Z. Constrains on the origin and history of the Eastern Mediterranean basin. Tectonophysics 1998, 298, 5–35. [Google Scholar] [CrossRef]
- Levell, B.; Argent, J.; Doré, A.G.; Fraser, S. Passive margins: Overview. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 2010, 7, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.B. Models for the evolution of passive margins. Reg. Geol. Tectonics Phaneroz. Rift Syst. Sediment. Basins 2012, 32–57. [Google Scholar] [CrossRef]
- Pawlowski, R. The use of gravity anomaly data for offshore continental margin demarcation. Lead. Edge 2008, 27, 697–824. [Google Scholar] [CrossRef]
- Scrutton, R.A. On sheared passive continental margins. Tectonophysics 1979, 59, 293–305. [Google Scholar] [CrossRef]
- Bird, D. Shear margins: Continent-ocean transform and fracture zone boundaries. Lead. Edge 2001, 20, 150–159. [Google Scholar] [CrossRef]
- Watts, A.B. Gravity anomalies, flexure and crustal structure at the Mozambique rifted margin. Mar. Pet. Geol. 2001, 18, 445–455. [Google Scholar] [CrossRef]
- Welsink, H.J.; Dwyer, J.D.; Knight, R.J. Tectono-stratigraphy of the Passive Margin Off Nova Scotia: Chapter 14: North American Margins. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins; Tankard, A.J., Balkwill, H.R., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1989; Volume 46, pp. 215–231. [Google Scholar]
- Alves, T.; Fetter, M.; Busby, C.; Gontijo, R.; Cunha, T.A.; Mattos, N.H. A tectono-stratigraphic review of continental breakup on intraplate continental margins and its impact on resultant hydrocarbon systems. Mar. Pet. Geol. 2020, 117. [Google Scholar] [CrossRef]
- Peron-Pinvidic, G.; Manatschal, G.; Alves, T.; Andersen, T.; Andres-Martinez, M.; Autin, J.; Ball, P.; Brune, S.; Buiter, S.; Cadenas, P.; et al. Rifted Margins: State of the Art and Future Challenges. Front. Earth Sci. 2019, 7, 218. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, A.R. Fold-related faults in the Syrian Arc belt of Northern Egypt. Mar. Pet. Geol. 2013, 48, 441–454. [Google Scholar] [CrossRef]
- McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys. J. Int. 2003, 155, 126–138. [Google Scholar] [CrossRef] [Green Version]
- McClusky, S.; Balassanian, S.; Barka, A.; Demir, C.; Ergintav, S.; Georgiev, I.; Gurkan, O.; Hamburger, M.; Hurst, K.; Kahle, H.; et al. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. Solid Earth 2000, 105, 5695–5719. [Google Scholar] [CrossRef]
- Reilinger, R.E.; McClusky, S.C.; Oral, M.B.; King, R.W.; Toksoz, M.N.; Barka, A.A.; Kinik, I.; Lenk, O.; Sanli, I. Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone. J. Geophys. Res. Solid Earth 1997, 102, 9983–9999. [Google Scholar] [CrossRef]
- Butler, R. A. H. F. Robertson & D. Mountrakis (eds) 2006. Tectonic Development of the Eastern Mediterranean Region. Geological Society Special Publication no. 260. vi + 717 pp. London, Bath: Geological Society of London. Price £100.00, US $180.00; GSL members’ price. Geol. Mag. 2008. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Jolivet, L.; Keskin, M. Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 2013, 375, 254–269. [Google Scholar] [CrossRef] [Green Version]
- Woodside, J.M. Tectonic elements and crust of the eastern Mediterranean Sea. Mar. Geophys. Res. 1977, 3, 317–354. [Google Scholar] [CrossRef]
- Smith, C.M. (Ed.) Schlumberger Geology of Egypt. In Proceedings of the Well Evaluation Conference; Schlumberger Middle East: Cairo, Egypt, 1984; pp. 1–64. [Google Scholar]
- Kamel, H.; Eita, T.; Sarhan, M. Nile delta hydrocarbon potentiality, Egypt. In Proceedings of the 14th Egyptian General Petroleum Corporation Exploration and Production Conference, Cairo, Egypt, November 1998; pp. 485–503. [Google Scholar]
- Mascle, J.; Sardou, O.; Loncke, L.; Migeon, S.; Caméra, L.; Gaullier, V. Morphostructure of the Egyptian continental margin: Insights from swath bathymetry surveys. Mar. Geophys. Res. 2006, 27, 49–59. [Google Scholar] [CrossRef]
- Barakat, M.K.A. Modern Geophysical Techniques for Constructing a 3D Geological Model on the Nile Delta, Egypt. Ph.D. Thesis, Berlin Institute of Technology, Berlin, Germany, 2010; p. 158. [Google Scholar]
- EGPC Nile Delta and North Sinia; Egyptian General Petroleum Corporation: Cairo, Egypt, 1994; p. 387.
- Netzeband, G.L.; Gohl, K.; Hübscher, C.P.; Ben-Avraham, Z.; Dehghani, G.A.; Gajewski, D.; Liersch, P. The Levantine Basin-crustal structure and origin. Tectonophysics 2006. [Google Scholar] [CrossRef] [Green Version]
- Bar, O.; Gvirtzman, Z.; Feinstein, S.; Zilberman, E. Accelerated subsidence and sedimentation in the Levant basin during the late Tertiary and concurrent uplift of the Arabian platform: Tectonic versus counteracting sedimentary loading effects. Tectonics 2013, 32, 334–350. [Google Scholar] [CrossRef]
- Rybakov, M.; Goldshmidt, V.; Hall, J.K.; Ben-Avraham, Z.; Lazar, M. New insights into the sources of magnetic anomalies in the Levant. Russ. Geol. Geophys. 2011, 52, 377–397. [Google Scholar] [CrossRef]
- Gvirtzman, Z.; Reshef, M.; Buch-Leviatan, O.; Ben-Avraham, Z. Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 2013, 379, 108–119. [Google Scholar] [CrossRef]
- Van der Meijde, M.; van der Lee, S.; Giardini, D. Crustal structure beneath broad-band seismic stations in the Mediterranean region. Geophys. J. Int. 2003, 152, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Sobh, M.; Mansi, A.H.; Campbell, S.; Ebbing, J. Regional gravity field model of Egypt based on satellite and terrestrial data. Pure Appl. Geophys. 2019, 176, 767–786. [Google Scholar] [CrossRef]
- Sobh, M.; Ebbing, J.; Mansi, A.H.; Götze, H.J. Inverse and 3D forward gravity modelling for the estimation of the crustal thickness of Egypt. Tectonophysics 2019, 752, 52–67. [Google Scholar] [CrossRef]
- Cowie, L.; Kusznir, N. Mapping crustal thickness and oceanic lithosphere distribution in the eastern Mediterranean using gravity inversion. Pet. Geosci. 2012, 18, 373–380. [Google Scholar] [CrossRef]
- Kende, J.; Henry, P.; Bayrakci, G.; Özeren, M.S.; Grall, C. Moho depth and crustal thinning in the Marmara Sea region from gravity data inversion. J. Geophys. Res. Solid Earth 2017, 122, 1381–1401. [Google Scholar] [CrossRef] [Green Version]
- Pfiffner, O.A. Thick-skinned and thin-skinned tectonics: A global perspective. Geosciences 2017, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Sobh, M.; Ebbing, J.; Mansi, A.H.; Götze, H.-J.; Emry, E.L.; Abdelsalam, M.G. The lithospheric structure of the Saharan metacraton From 3-D integrated geophysical-petrological modeling. J. Geophys. Res. Solid Earth 2020, 125. [Google Scholar] [CrossRef]
- Kaban, M.K.; El Khrepy, S.; Al-Arifi, N. Density structure and isostasy of the lithosphere in Egypt and their relation to seismicity. Solid Earth 2018, 9, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Lort, J.M.; Limond, W.Q.; Gray, F. Preliminary seismic studies in the eastern Mediterranean. Earth Planet. Sci. Lett. 1974, 21, 355–366. [Google Scholar] [CrossRef]
- Meier, T.; Dietrich, K.; Stöckhert, B.; Harjes, H.P. One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys. J. Int. 2004, 156, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Koulakov, I.; Sobolev, S.V. Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys. J. Int. 2006, 164, 218–235. [Google Scholar] [CrossRef] [Green Version]
- Di Luccio, F.; Pasyanos, M.E. Crustal and upper-mantle structure in the Eastern Mediterranean from the analysis of surface wave dispersion curves. Geophys. J. Int. 2007, 169, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Sampietro, D.; Mansi, A.H.; Capponi, M. Moho depth and crustal architecture beneath the Levant basin from global gravity field model. Geosciences 2018, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Hamouda, A.; El-Gharabawy, S. Impacts of neotectonics and salt diaper on the Nile Fan deposit, Eastern Mediterranean. Environ. Earth Sci. Res. J. 2019, 6, 8–18. [Google Scholar] [CrossRef]
- Makris, J.; Allam, A.; Möller, L. Deep seismic studies in Egypt and their interpretation. EOS Trans. Am. Geophys. Union 1981, 62, 230. [Google Scholar]
- Abdelwahed, M.F.; El-Khrepy, S.; Qaddah, A. Three-dimensional structure of Conrad and Moho discontinuities in Egypt. J. Afr. Earth Sci. 2013, 85, 87–102. [Google Scholar] [CrossRef]
- Hosny, A.; Nyblade, A. The crustal structure of Egypt and the northern Red Sea region. Tectonophysics 2016, 687, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Marzouk, I. Study of Crustal Structure of Egypt Deduced from Deep Seismic and Gravity Data. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 1988. [Google Scholar]
- El-Hadidy, S. Crustal Structure and Its Related Causative Tectonics in Northern Egypt Using Geophysical Data. Ph.D. Thesis, Ain Shams University, Cairo, Egypt, 1995. [Google Scholar]
- Dorre, A.S.; Carrara, E.; Cella, F.; Grimaldi, M.; Hady, Y.A.; Hassan, H.; Rapolla, A.; Roberti, N. Crustal thickness of Egypt determined by gravity data. J. Afr. Earth Sci. 1997, 25, 425–434. [Google Scholar] [CrossRef]
- Azab, A.; El-Khadragy, A.; Soliman, S.A. Egyptian Crust: A structural modeling, based on gravity and seismic data. J. Am. Sci. 2015, 13, 1576–1580. [Google Scholar] [CrossRef]
- Saleh, S. 3D crustal structure and its tectonic implication for Nile delta and greater Cairo regions, Egypt, from geophysical data. Acta Geod. Geophys. Hungarica 2012, 47, 402–429. [Google Scholar] [CrossRef]
- Hirt, C.; Kuhn, M.; Featherstone, W.E.; Gtötl, F. Topographic/isostatic evaluation of new-generation GOCE gravity field models. J. Geophys. Res. Solid Earth 2012, 117, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Wu, H. Using quantum optical sensors for determining the Earth’s gravity field from space. J. Geod. 2020, 94, 71. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F. Fast nonlinear gravity inversion in spherical coordinates with application to the South AmericanMoho. Geophys. J. Int. 2017, 208, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Bott, M.H.P. The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophys. J. R. Astron. Soc. 1960, 3, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Harms, J.C.; Wray, J.L. Pre-Pliocene History and Depositional Facies, Nile Delta, Egypt. AAPG Bull. United States 1988, 72. [Google Scholar] [CrossRef]
- Said, R. The geology of Egypt; Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar] [CrossRef]
- Said, R. The geological evolution of the River Nile in Egypt. Z. Geomorphol. 1982. [Google Scholar] [CrossRef]
- Barber, P.M. Messinian subaerial erosion of the proto-Nile Delta. Mar. Geol. 1981, 44, 253–272. [Google Scholar] [CrossRef]
- Coutellier, V.; Stanley, D.J. Late Quaternary stratigraphy and paleogeography of the eastern Nile Delta, Egypt. Mar. Geol. 1987, 77, 257–275. [Google Scholar] [CrossRef]
- Elsohby, M.A.; Mazen, S.O.; Abou-Shook, M.; Bahr, M.A. Coastal development of Nile Delta. Coast. Lowl. Geol. Geotechnol. Proc. KNGMG Symp. Hague 1987 1989, 179, 175–179. [Google Scholar] [CrossRef]
- Narton, P. Rock Stratigraphic Nomenclature of the Western Desert; Pan American Petroleum and Transport Company: New York, NY, USA, 1967. [Google Scholar]
- Rizzini, A.; Vezzani, F.; Cococcetta, V.; Milad, G. Stratigraphy and sedimentation of a Neogene-Quaternary section in the Nile Delta area (A.R.E.). Mar. Geol. 1978, 27, 327–348. [Google Scholar] [CrossRef]
- Stanley, D.J.; Warne, A.G. Nile Delta: Recent Geological Evolution and Human Impact. Science 1993, 260, 628–634. [Google Scholar] [CrossRef]
- Warne, A.G.; Stanley, D.J. Sea-level change as critical factor in development of basin margin sequences: New evidence from late Quaternary record. J. Coast. Res. 1995, 231–240. [Google Scholar]
- Zaghloul, Z.M.; Abdel-Daiem, A.A.; Taha, A.A. Geomorphology, geologic, evolution and subsidence of the Nile Delta during the Quaternary. Bull. Fac. Sci. 1990, 1, 471–495. [Google Scholar]
- Samuel, A.; Kneller, B.; Raslan, S.; Sharp, A.; Parsons, C. Prolific deep-marine slope channels of the Nile Delta, Egypt. Am. Assoc. Pet. Geol. Bull. 2003, 87, 541–560. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.I.; Slatt, R.M. Sequence stratigraphic controls on reservoir characterization and architecture: Case study of the Messinian Abu Madi incised-valley fill, Egypt. Cent. Eur. J. Geosci. 2013, 5, 497–507. [Google Scholar] [CrossRef] [Green Version]
- EGPC-Conoco Coral Egyptian General Petroleum Corporation-Conoco Coral, Geological map of Egypt, Scale 1:500,000. Geol. Surv. Egypt 1987.
- Vandré, C.; Cramer, B.; Gerling, P.; Winsemann, J. Natural gas formation in the western Nile delta (Eastern Mediterranean): Thermogenic versus microbial. Org. Geochem. 2007, 38, 523–539. [Google Scholar] [CrossRef]
- Sarhan, M.A.; Collier, R.E.L.; Basal, A.; Abdel Aal, M.H. Late Miocene normal faulting beneath the northern Nile Delta: NNW propagation of the Gulf of Suez Rift. Arab. J. Geosci. 2014, 7, 4563–4571. [Google Scholar] [CrossRef]
- Abdel Aal, A.; El Barkooky, A.; Gerrits, M.; Meyer, H.J.; Schwander, M.; Zaki, H. Tectonic evolution of the eastern Mediterranean basin and its significance for the hydrocarbon prospectivity of the Nile Delta deepwater area. GeoArabia 2001, 6, 363–384. [Google Scholar]
- De Ruiter, R.S.C.; Lovelock, P.E.R.; Nabulsi, N. The Euphrates graben, Eastern Syria: A new petroleum province in the northern Middle East. In Proceedings of the Geo ’94, Middle East Pet, Manama, Bahrain, 25–27 April 1994. [Google Scholar]
- Robertson, A.H.F.; Dixon, J.E.; Brown, S.; Collins, A.; Morris, A.; Pickett, E.; Sharp, I.; Ustaömer, T. Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region. Geol. Soc. Spec. Publ. 1996, 105, 239–263. [Google Scholar] [CrossRef]
- Orwig, R. Tectonic framework of Northern Egypt and the Eastern Mediterranean region. In Proceedings of the 6th Exploration and Production Conference, Cairo, Egypt; 1982; Volume 1, p. 20. [Google Scholar]
- Omara, S. Diapiric structures in Egypt and Syria. Am. Assoc. Pet. Geol. Bull. 1964, 48, 1116–1125. [Google Scholar]
- Litak, R.K.; Barazangi, M.; Beauchamp, W.; Seber, D.; Brew, G.; Sawaf, T.; Al-Youssef, W. Mesozoic-Cenozoic evolution of the intraplate Euphrates fault system, Syria: Implications for regional tectonics. J. Geol. Soc. Lond. 1997. [Google Scholar] [CrossRef]
- Bosworth, W.; Guiraud, R.; Kessler, L.G. Late Cretaceous (±84 Ma) compressive deformation of the stable shelf of NE Africa (Egypt): Far-Field stress effects of the “Santonian event” and origin of the Syrian arc. Geology 1999, 27, 633–636. [Google Scholar] [CrossRef]
- Moustafa, A.R.; Khalil, S.M. Control of compressional transfer zones on syntectonic and posttectonic sedimentation: Implications for hydrocarbon exploration. J. Geol. Soc. Lond. 2017, 174, 336–352. [Google Scholar] [CrossRef]
- Abd El-Motaal, E.; Orabi, A.; Tolba, M.; El-Sawy, E. Structural developmentand its influence on the geomorphology of the strongly folded portion in northernSinai, Egypt. Al-Azhar Bull. Sci. 2001, 12, 37–50. [Google Scholar]
- Quennell, A.M. The Western Arabia rift system. Geol. Soc. Spec. Publ. 1984, 17, 775–788. [Google Scholar] [CrossRef]
- Brew, G.; Barazangi, M.; Al-Maleh, K.; Sawaf, T. Tectonic and geologic evolution of Syria. GeoArabia 2001, 6, 573–616. [Google Scholar]
- Kvas, A.; Mayer-Gürr, T.; Krauss, S.; Brockmann, J.M.; Schubert, T.; Schuh, W.-D.; Pail, R.; Gruber, T.; Jäggi, A.; Meyer, U. The satellite-only gravity field model GOCO06s. GFZ Data Serv. 2019. [Google Scholar] [CrossRef]
- Amante, C.; Eakins, B.W. {ETOPO}1 Global Relief Model converted to {PanMap} layer format. NOAA-National Geophys. Data Cent. 2009. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0-A1-degree global model of Earth’s crust. In Proceedings of the EGU General Assembly, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Ben-Avraham, Z.; Ginzburg, A.; Makris, J.; Eppelbaum, L. Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics 2002, 346, 23–43. [Google Scholar] [CrossRef]
- Floberghagen, R.; Fehringer, M.; Lamarre, D.; Muzi, D.; Frommknecht, B.; Steiger, C.; Piñeiro, J.; da Costa, A. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J. Geod. 2011, 85, 749–758. [Google Scholar] [CrossRef]
- Sebera, J.; Šprlák, M.; Novák, P.; Bezděk, A.; Vaľko, M. Iterative spherical downward continuation applied to magnetic and gravitational data from satellite. Surv. Geophys. 2014, 35, 941–958. [Google Scholar] [CrossRef]
- Ince, E.S.; Barthelmes, F.; Reißland, S.; Elger, K.; Förste, C.; Flechtner, F.; Schuh, H. ICGEM-15 years of successful collection and distribution of global gravitational models, associated services and future plans. Earth Syst. Sci. Data 2019, 11, 647–674. [Google Scholar] [CrossRef] [Green Version]
- Barthelmes, F.; Kohler, W. International Centre for Global Earth Models (ICGEM). J. Geod. 2012, 86, 932–934. [Google Scholar]
- Szwillus, W.; Ebbing, J.; Holzrichter, N. Importance of far-field topographic and isostatic corrections forregional density modelling. Geophys. J. Int. 2016, 207, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Mansi, A.H.; Capponi, M.; Sampietro, D. Downward continuation of airborne gravity data by means of the change of boundary approach. Pure Appl. Geophys. 2018, 175, 977–988. [Google Scholar] [CrossRef]
- Exxon Tectonic Map Series of theWorld; ExxonMobil Research & Engineering Co.: Houston, TX, USA, 1985.
- Longacre, M.; Bentham, P.; Hanbal, I.; Cotton, J.; Edwards, R. New crustal structure of the Eastern Mediterranean basin: Detailed integration and modeling of gravity, magnetic, seismic refraction, and seismic reflection Data. In Proceedings of the EGM 2007 International Workshop, Capri, Italy, 15–18 August 2007; pp. 1–5. [Google Scholar]
- Li, X.; Götze, H.-J. Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics 2001, 66, 1660–1959. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F.; Braitenberg, C. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics 2016, 81, F41–F48. [Google Scholar] [CrossRef]
- Asgharzadeh, M.F.; von Frese, R.R.B.; Kim, H.R.; Leftwich, T.E.; Kim, J.W. Spherical prism gravity effects by Gauss-Legendre quadrature integration. Geophys. J. Int. 2007, 169, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hayford, J.F.; Bowie, W. The effect of topography and isostatic compensation upon the intensity of gravity. Bull. Am. Geogr. Soc. 1912, 44, 464–465. [Google Scholar] [CrossRef]
- Hinze, W.J. Bouguer reduction density, why 2.67? Geophysics 2003, 68, 1559–1560. [Google Scholar] [CrossRef]
- Barbosa, V.C.F.; Silva, J.B.C.; Medeiros, W.E. Gravity inversion of basement relief using approximate equality constraints on depths. Geophysics 1997, 62, 1683–2002. [Google Scholar] [CrossRef] [Green Version]
- Barnes, G.; Barraud, J. Imaging geologic surfaces by inverting gravity gradient data with depth horizons. Geophysics 2012, 77, 1JF–Z19. [Google Scholar] [CrossRef]
- Martins, C.M.; Barbosa, V.C.F.; Silva, J.B.C. Simultaneous 3D depth-to-basement and density-contrast estimates using gravity data and depth control at few points. Geophysics 2010, 75, 1MJ–Z72. [Google Scholar] [CrossRef]
- Oldenburg, D.W. Inversion and interpetation of gravity anomalies. Geophysics 1974, 39, 526–536. [Google Scholar] [CrossRef]
- Santos, D.F.; Silva, J.B.C.; Martins, C.M.; dos Santos, R.D.C.S.; Ramos, L.C.; de Araújo, A.C.M. Efficient gravity inversion of discontinuous basement relief. Geophysics 2015, 80, 1JA-Z63. [Google Scholar] [CrossRef]
- Silva, J.B.C.; Santos, D.F.; Gomes, K.P. Fast gravity inversion of basement relief. Geophysics 2014, 79, 1SO-Z136. [Google Scholar] [CrossRef]
- Uieda, L.; Oliveira, V.; Barbosa, V. Modeling the Earth with Fatiando a Terra. In Proceedings of the 12th Python in Science Conference, Austin, TX, USA, 24–29 June 2013; pp. 96–103. [Google Scholar]
- Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; John Wiley: New York, NY, USA, 1977; p. 300. [Google Scholar]
- Kim, J.H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Comput. Stat. Data Anal. 2009, 53, 3735–3745. [Google Scholar] [CrossRef]
- Götze, H.-J.; Lahmeyer, B. Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 1988, 53, 1096–1108. [Google Scholar] [CrossRef]
- Schmidt, S.; Götze, H.-J.; Fichler, C.; Alvers, M. IGMAS+ – a new 3D Gravity, FTG and Magnetic Modeling Software. In Konferenzband GEO-INFORMATIK 2010 Die Welt im Netz, Herausgeber; Zipf, A., Behncke, K., Hillen, F., Schefermeyer, J., Eds.; Akademische Ver-lagsgesellschaft AKA GmbH: Kiel, Germany, 2010; pp. 57–63. ISBN 978-3-89838-335-6. [Google Scholar]
- Makris, J.; Stobbe, C. Physical properties and state of the crust and upper mantle of the Eastern Mediterranean Sea deduced from geophysical data. Mar. Geol. 1984, 55, 347–363. [Google Scholar] [CrossRef]
- Omran, M.; Fathy, H. Structural evolution of the Nile Cone area. Egypt J. Geol. 1998, 42, 273–291. [Google Scholar]
- Hirsch, K.K.; Bauer, K.; Scheck-Wenderoth, M. Deep structure of the western South African passive margin - Results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics 2009, 470, 1–194. [Google Scholar] [CrossRef] [Green Version]
- Jilinski, P.; Meju, M.A.; Fontes, S.L. Demarcation of continental-oceanic transition zone using angular differences between gradients of geophysical fields. Geophys. J. Int. 2013, 195, 276–281. [Google Scholar] [CrossRef]
- Maurya, V.; Fontes, S.; La Terra, E. An enhanced and effective technique for demarcation of Continental—Oceanic transition—Application for South Atlantic conjugate margins. In Proceedings of the 79th EAGE Conference and Exhibition, Paris, France, 12–15 June 2017. [Google Scholar]
- Karner, G.D.; Driscoll, N.W. Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: Insights from quantitative basin modelling. Geol. Soc. Spec. Publ. 1999, 153, 11–40. [Google Scholar] [CrossRef]
- Whitmarsh, R.B.; Miles, P.R. Models of the development of the west Iberia rifted continental margin at 40°30′N deduced from surface and deep-tow magnetic anomalies. J. Geophys. Res. 1995, 100, 3789–3806. [Google Scholar] [CrossRef]
- Wilson, R.C.L.; Manatschal, G.; Wise, S. Rifting along non-volcanic passive margins: Stratigraphic and seismic evidence from the mesozoic successions of the Alps and Western Iberia. Geol. Soc. Spec. Publ. 2001, 187, 429–452. [Google Scholar] [CrossRef]
- Granot, R. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nat. Geosci. 2016, 9, 701–705. [Google Scholar] [CrossRef]
- Segev, A.; Rybakov, M.; Lyakhovsky, V.; Hofstetter, A.; Tibor, G.; Goldshmidt, V.; Ben Avraham, Z. The structure, isostasy and gravity field of the Levant continental margin and the southeast Mediterranean area. Tectonophysics 2006, 425, 137–157. [Google Scholar] [CrossRef]
- Omran, M. Crustal modeling of the continental margin of the Nile Delta region. Ann. Geol. Surv. Egypt 2000, 23, 381–387. [Google Scholar]
- Boillot, G.; Froitzheim, N. Non-volcanic rifted margins, continental break-up and the onset of sea-floor spreading: Some outstanding questions. Geol. Soc. Spec. Publ. 2001, 187, 9–30. [Google Scholar] [CrossRef] [Green Version]
- Keen, C.E.; Dickie, K.; Dafoe, L.T. Structural characteristics of the ocean-continent transition along the rifted continental margin, offshore central Labrador. Mar. Pet. Geol. 2018, 89, 443–463. [Google Scholar] [CrossRef]
- Mjelde, R.; Raum, T.; Murai, Y.; Takanami, T. Continent-ocean-transitions: Review, and a new tectono-magmatic model of the Vøring Plateau, NE Atlantic. J. Geodyn. 2007, 43, 374–392. [Google Scholar] [CrossRef]
- Ranero, C.R.; Phipps Morgan, J.; McIntosh, K.; Relchert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 2003, 425, 367–373. [Google Scholar] [CrossRef]
- Garcia, E.S.M.; Sandwell, D.T.; Bassett, D. Outer trench slope flexure and faulting at Pacific basin subduction zones. Geophys. J. Int. 2019, 218, 708–728. [Google Scholar] [CrossRef]
- Stern, R.J. Subduction initiation: Spontaneous and induced. Earth Planet. Sci. Lett. 2004, 226, 275–292. [Google Scholar] [CrossRef]
- Salamon, A.; Hofstetter, A.; Garfunkel, Z.; Ron, H. Seismotectonics of the Sinai subplate-The eastern Mediterranean region. Geophys. J. Int. 2003, 155, 149–173. [Google Scholar] [CrossRef] [Green Version]
- Sawires, R.; Peláez, J.A.; Fat-Helbary, R.E.; Ibrahim, H.A. A review of seismic hazard assessment studies and hazard description in the building codes for Egypt. Acta Geod. Geophys. 2016, 51, 151–180. [Google Scholar] [CrossRef] [Green Version]
- Geoffroy, L. Volcanic passive margins. Comptes Rendus Geosci. 2005, 337, 1395–1408. [Google Scholar] [CrossRef]
- Tari, G.; Kohazy, R.; Hannke, K.; Hussein, H.; Novotny, B.; Mascle, J. Examples of deep-water play types in the Matruh and Herodotus basins of NW Egypt. Lead. Edge 2012, 31, 741–872. [Google Scholar] [CrossRef]
- Séranne, M.; Anka, Z. South Atlantic continental margins of Africa: A comparison of the tectonic vs climate interplay on the evolution of equatorial west Africa and SW Africa margins. J. Afr. Earth Sci. 2005, 43, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Pindell, J.; Graham, R.; Horn, B. Rapid outer marginal collapse at the rift to drift transition of passive margin evolution, with a Gulf of Mexico case study. Basin Res. 2014, 26, 701–725. [Google Scholar] [CrossRef]
- Sarhan, M.; Hemdan, K. North Nile Delta structural setting and trapping mechanism, Egypt. In Proceedings of the 12th EGPC, Egyptian General Petroleum Corporation Conference, Cairo, Egypt, 1994; pp. 1–18. [Google Scholar]
- Stanley, D.J.; Clemente, P.L. Increased land subsidence and sea-level rise are submerging Egypt’s nile delta coastal margin. GSA Today 2017, 27, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Walley, C.D. Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region. Tectonophysics 1998, 298, 37–62. [Google Scholar] [CrossRef]
- Jenkins, D. North and Central Sinai. In Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 361–380. [Google Scholar]
- Hirt, C.; Rexer, M. 10,800 Spherical Harmonics. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Braitenberg, C.; Wienecke, S.; Ebbing, J.; Born, W.; Redfield, T.; Mariani, P. LithoFLEX Tutorial: User’s Manual; lithoFLEX Group: Trieste, Italy, 2008. [Google Scholar]
- Mann, P.; Gahagan, L.; Gordon, M.B. Tectonic setting of the world’s giant oil and gas fields. AAPG Mem. 2005, 78, 15–105. [Google Scholar] [CrossRef]
- Mohriak, W.; Talwani, M. Atlantic rifts and continental margins. In Geophysical Monograph Series; American Geophysical Union: Washington, DC, USA, 2000; Volume 115, p. 354. [Google Scholar]
- Wen, Z.; Xu, H.; Wang, Z.; He, Z.; Song, C.; Chen, X.; Wang, Y. Classification and hydrocarbon distribution of passive continental margin basins. Pet. Explor. Dev. 2016, 43, 740–750. [Google Scholar] [CrossRef]
- Hanafy, S.; Nimmagadda, S.L.; Mahmoud, S.E.; Mabrouk, W.M.; Farhood, K. Regional integrated interpretation of the hydrocarbon prospectivity of the Nile Delta, Offshore Egypt. Arab. J. Geosci. 2016, 9, 376. [Google Scholar] [CrossRef]
- El Diasty, W.S.; Peters, K.E.; Moldowan, J.M.; Essa, G.I.; Hammad, M.M. Organic geochemistry of condensates and natural gases in the northwest Nile Delta offshore Egypt. J. Pet. Sci. Eng. 2020, 187, 106819. [Google Scholar] [CrossRef]
- Keshta, S.; Metwalli, F.J.; Al Arabi, H.S. Analysis of petroleum system for exploration and risk reduction in abu Madi/Elqar’a gas field, Nile Delta, Egypt. Int. J. Geophys. 2012, 2012, 187938. [Google Scholar] [CrossRef]
- Pigott, J.D.; Abdel-Fattah, M.I. Seismic stratigraphy of the Messinian Nile Delta coastal plain: Recognition of the fluvial Regressive Systems Tract and its potential for hydrocarbon exploration. J. Afr. Earth Sci. 2014, 95, 9–12. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.I.; Tawfik, A.Y. 3D geometric modeling of the Abu Madi reservoirs and its implication on the gas development in Baltim Area (Offshore Nile Delta, Egypt). Int. J. Geophys. 2015, 2015, 369143. [Google Scholar] [CrossRef]
- Nassar, M.; Matresu, J.; Talat, A.; Hasan, M. Abu madi reservoirs-evaluation of level-III remaining gas potential, Abu Madi and el Qara fields. In Proceedings of the Society of Petroleum Engineers-SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–16 September 2015. [Google Scholar]
- Leila, M.; Eslam, A.; El-Magd, A.A.; Alwaan, L.; Elgendy, A. Formation evaluation and reservoir characteristics of the Messinian Abu Madi sandstones in Faraskour Gas Field, onshore Nile Delta, Egypt. J. Pet. Explor. Prod. Technol. 2020, 11, 133–155. [Google Scholar] [CrossRef]
- Esestime, P.; Hewitt, A.; Hodgson, N. Zohr-A newborn carbonate play in the Levantine Basin, East-Mediterranean. First Break 2016, 34, 87–93. [Google Scholar] [CrossRef]
- Cozzi, A.; Cascone, A.; Bertelli, L.; Bertello, F.; Brandolese, S.; Minervini, M.; Ronchi, P.; Ruspi, R.; Harby, H. Zohr giant gas discovery—A paradigm shift in Nile Delta and East Mediterranean exploration. In Proceedings of the AAPG/SEG 2017 International Conference and Exhibition, London, UK, 15–18 October 2017. [Google Scholar]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic mapping tools: Improved version released. EOS 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- ESRI ArcGIS for Desktop. Geographic Information Systems (GIS) Software ESRI ArcGIS105 Version 10.2.1. 2018. Available online: http://www.esri.com/software/arcgis/arcgis-fordesktop (accessed on 11 April 2020).
- Crameri, F.; Shephard, G.E.; Heron, P.J. The misuse of colour in science communication. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.; Sultan, M.; Sobh, M.; Elhebiry, M.S.; Zahran, K.; Abdeldayem, A.; Issawy, E.; Kamh, S. Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data. Remote Sens. 2021, 13, 1934. https://doi.org/10.3390/rs13101934
Hassan S, Sultan M, Sobh M, Elhebiry MS, Zahran K, Abdeldayem A, Issawy E, Kamh S. Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data. Remote Sensing. 2021; 13(10):1934. https://doi.org/10.3390/rs13101934
Chicago/Turabian StyleHassan, Soha, Mohamed Sultan, Mohamed Sobh, Mohamed S. Elhebiry, Khaled Zahran, Abdelaziz Abdeldayem, Elsayed Issawy, and Samir Kamh. 2021. "Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data" Remote Sensing 13, no. 10: 1934. https://doi.org/10.3390/rs13101934
APA StyleHassan, S., Sultan, M., Sobh, M., Elhebiry, M. S., Zahran, K., Abdeldayem, A., Issawy, E., & Kamh, S. (2021). Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data. Remote Sensing, 13(10), 1934. https://doi.org/10.3390/rs13101934