Hybrid Attention Based Residual Network for Pansharpening
Abstract
:1. Introduction
- 1.
- A feature extraction network is designed with two branches including an encoder attention module to extract the spectral correlation between MS image channels and the advanced texture features from PAN images;
- 2.
- A hybrid attention mechanism with the truncation normalization is proposed in the feature fusion network to alleviate the problem of spectral distortion, and to improve the spatial resolution simultaneously;
- 3.
- Extensive experiments are conducted to verify the effectiveness of the attention mechanism in the proposed method, which could provide a comparative baseline for related research work.
2. Related Work
2.1. Traditional Algorithms
2.2. Deep Learning Based Algorithms
3. Proposed Methods
3.1. Network Architecture
3.2. Loss Function
3.3. Hybrid Attention Mechanism
4. Results and Discussion
- 1.
- The encoder attention and fusion attention modules could improve pansharpening accuracy.
- 2.
- The residual hybrid attention mechanism is able to alleviate the problem of spectral distortion.
- 3.
- The proposed network outperforms other state-of-the-art pansharpening methods in spatial resolution.
4.1. Datasets
4.2. Comparison Methods and Evaluation Indices
4.3. Comparison of the Efficiency of Different Attention Strategies
4.4. Comparison of Spectral Distortion
4.5. Comparison of Spatial Resolution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sweeting, M. Modern Small Satellites-Changing the Economics of Space. Proc. IEEE 2018, 106, 343–361. [Google Scholar] [CrossRef]
- Zhang, Y. Understanding image fusion. Photogramm. Eng. Remote Sens. 2004, 70, 657–661. [Google Scholar]
- Javan, F.D.; Samadzadegan, F.; Mehravar, S.; Toosi, A.; Khatami, R.; Stein, A. A review of image fusion techniques for pan-sharpening of high-resolution satellite imagery. ISPRS J. Photogramm. Remote Sens. 2021, 171, 101–117. [Google Scholar] [CrossRef]
- Meng, X.; Shen, H.; Li, H.; Zhang, L.; Fu, R. Review of the Pansharpening Methods for Remote Sensing Images Based on the Idea of Meta-analysis: Practical Discussion and Challenges. Inf. Fusion 2018, 46, 102–103. [Google Scholar] [CrossRef]
- Kahraman, S.; Erturk, A. Review and Performance Comparison of Pansharpening Algorithms for RASAT Images. J. Electr. Electron. Eng. 2018, 18, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Vivone, G.; Alparone, L.; Chanussot, J.; Mura, M.D.; Garzelli, A.; Licciardi, G.A.; Restaino, R.; Wald, L. A Critical Comparison Among Pansharpening Algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 53, 2565–2586. [Google Scholar] [CrossRef]
- Shahdoosti, H.R. Combining the spectral PCA and spatial PCA fusion methods by an optimal filter. Inf. Fusion 2016, 27, 150–160. [Google Scholar] [CrossRef]
- Xu, Q.; Ding, L.; Zhang, Y.; Li, B. High-Fidelity Component Substitution Pansharpening by the Fitting of Substitution Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7380–7392. [Google Scholar]
- Dare, Z.P. Wavelet based image fusion techniques—An introduction, review and comparison. IEEE Trans. Geosci. Remote Sens. 2007, 62, 249–263. [Google Scholar]
- Giuseppe, M.; Davide, C.; Luisa, V.; Giuseppe, S. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar]
- Liu, X.; Wang, Y.; Liu, Q. PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening. IEEE Trans. Geosci. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Sun, M.; Ou, Y. Pan-Sharpening Using an Efficient Bidirectional Pyramid Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5549–5563. [Google Scholar] [CrossRef]
- Hallabia, H.; Hamam, H.; Hamida, A.B. An Optimal Use of SCE-UA Method Cooperated with Superpixel Segmentation for Pansharpening. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- He, L.; Xi, D.; Li, J.; Zhu, J. A Spectral-Aware Convolutional Neural Network for Pansharpening. Appl. Sci. 2020, 10, 5809. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, Q. Remote Sensing Image Fusion Based on Two-Stream Fusion Network; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Wei, Y.; Yuan, Q.; Shen, H.; Zhang, L. Boosting the Accuracy of Multispectral Image Pansharpening by Learning a Deep Residual Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1795–1799. [Google Scholar] [CrossRef] [Green Version]
- Dadrasjavan, F.; Samadzadegan, F.; Fathollahi, F. Spectral and Spatial Quality assessment of IHS and Wavelet Based Pan-sharpening Techniques for High Resolution Satellite Imagery. Adv. Image Video Process. 2018, 6, 1. [Google Scholar]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. U.S. Patent US6011875A, 4 January 2000. [Google Scholar]
- Leung, Y.; Liu, J.; Zhang, J. An Improved Adaptive Intensity–Hue–Saturation Method for the Fusion of Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2013, 11, 985–989. [Google Scholar] [CrossRef]
- Ghahremani, M.; Ghassemian, H. Nonlinear IHS: A Promising Method for Pan-Sharpening. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1606–1610. [Google Scholar] [CrossRef]
- Vivone, G.; Alparone, L.; Id, A.; Garzelli; Lolli, S. Fast Reproducible Pansharpening Based on Instrument and Acquisition Modeling: AWLP Revisited. Remote Sens. 2019, 11, 2315. [Google Scholar] [CrossRef] [Green Version]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, C.; Han, D.; Kim, Y. Improved Additive-Wavelet Image Fusion. IEEE Geosci. Remote Sens. Lett. 2011, 8, 263–267. [Google Scholar] [CrossRef]
- Pradhan, P.S.; King, R.L.; Younan, N.H.; Holcomb, D.W. Estimation of the Number of Decomposition Levels for a Wavelet-Based Multiresolution Multisensor Image Fusion. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3674–3686. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Li, S.; Yin, H.; Fang, L. Remote Sensing Image Fusion via Sparse Representations Over Learned Dictionaries. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4779–4789. [Google Scholar] [CrossRef]
- Vicinanza, M.R.; Restaino, R.; Vivone, G.; Mura, M.D.; Chanussot, J. A pansharpening method based on the sparse representation of injected details. IEEE Geosci. Remote Sens. Lett. 2014, 12, 180–184. [Google Scholar] [CrossRef]
- Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J.Y. Hyperspectral and Multispectral Image Fusion based on a Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3658–3668. [Google Scholar] [CrossRef] [Green Version]
- Amin-Naji, M.; Aghagolzadeh, A.; Ezoji, M. Ensemble of CNN for Multi-Focus Image Fusion. Inf. Fusion 2019, 51, 201–214. [Google Scholar] [CrossRef]
- Prabhakar, K.R.; Srikar, V.S.; Babu, R.V. DeepFuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Xu, K.; Wen, L.; Li, G.; Bo, L.; Huang, Q. Spatiotemporal CNN for video object segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Ghosh, A.; Mishra, N.S.; Ghosh, S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 2011, 181, 699–715. [Google Scholar] [CrossRef]
- Ullah, W.; Ullah, A.; Hussain, T.; Khan, Z.A.; Baik, S.W. An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos. Sensors 2021, 21, 2811. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Ding, W.; Palade, V.; Haq, I.U.; Baik, S.W. Efficient Activity Recognition using Lightweight CNN and DS-GRU Network for Surveillance Applications. Appl. Soft Comput. 2021, 103, 107102. [Google Scholar] [CrossRef]
- Scarpa, G.; Vitale, S.; Cozzolino, D. Target-Adaptive CNN-Based Pansharpening. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5443–5457. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Yang, B.; Huang, G.; Fei, Z.; Chen, Z. Remote Sensing Image Fusion with Convolutional Neural Network. Sens. Imaging 2016, 17, 10. [Google Scholar] [CrossRef]
- Chao, D.; Chen, C.L.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution; Springer International Publishing: New York, NY, USA, 2014. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Boser, B.; Denker J, S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. CNN-based pansharpening of multi-resolution remote-sensing images. In Proceedings of the Urban Remote Sensing Event, Dubai, United Arab Emirates, 6–8 March 2017. [Google Scholar]
- Vitale, S. A CNN-based pansharpening method with perceptual loss. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 28–2 August 2019. [Google Scholar]
- Shao, Z.; Cai, J. Remote Sensing Image Fusion with Deep Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1656–1669. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Jian, S. Identity Mappings in Deep Residual Networks; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Rui, X.; Cao, Y.; Kang, Y.; Song, W.; Ba, R. Maskpan: Mask Prior Guided Network for Pansharpening. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020. [Google Scholar]
- Yuan, Q.; Wei, Y.; Meng, X.; Shen, H.; Zhang, L. A Multiscale and Multidepth Convolutional Neural Network for Remote Sensing Imagery Pan-Sharpening. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Teng, M.; Shi, B.; Wang, Y.; Huang, T. Learning to Deblur and Generate High Frame Rate Video with an Event Camera. arXiv 2020, arXiv:2003.00847. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
Notation | Explaination |
---|---|
M | Original low-resolution MS image |
P | Original high-resolution PAN image |
Downsampled blurred low-resolution MS image | |
Downsampled high-resolution PAN image | |
Fused high-resolution MS image | |
F | Feature maps extracted from feature extraction network |
fused feature maps |
Satellite | Gaofen-1 | Gaofen-2 |
---|---|---|
Spectral Bands | 4 | 4 |
GSD-MS | 2 m | 0.81 m |
GSD-PAN | 8 m | 3.24 m |
Image size | 4500*4500 | 6000*6000 |
Image num | 1 | 5 |
Tile num | 5625 | 48,956 |
Landscape | Mountains, Settlements | Settlements, Vegetation, Water |
Evaluation Indices | Plain | Encoder | Fusion | Proposed |
---|---|---|---|---|
ERGAS↓ | 3.2986 | 2.961 | 2.9039 | 1.1603 |
Q↑ | 0.5027 | 0.4747 | 0.4793 | 0.8584 |
UIQI↑ | 0.9878 | 0.9915 | 0.9918 | 0.9984 |
CC↑ | 0.917 | 0.926 | 0.9233 | 0.9927 |
SAM↓ | 0.1065 | 0.1039 | 0.1043 | 0.0407 |
SSIM↑ | 0.7765 | 0.7766 | 0.7782 | 0.9638 |
PSNR↑ | 27.3061 | 27.8382 | 28.074 | 39.5128 |
↓ | 0.0317 | 0.022 | 0.0287 | 0.0025 |
↑ | 0.9322 | 0.9239 | 0.9342 | 0.7318 |
Methods | Distorted Pixels | Percentage |
---|---|---|
Wavelet | 389 | 10.81% |
PCA | 1467 | 40.75% |
RSIFNN | 205 | 5.69% |
SRCNN | 583 | 16.19% |
TFCNN | 87 | 2.42% |
PNN | 428 | 11.89% |
proposed | 34 | 0.94% |
Methods | Distorted Pixels | Percentage |
---|---|---|
Wavelet | 606 | 9.47% |
PCA | 6400 | 100% |
RSIFNN | 138 | 2.16% |
SRCNN | 689 | 10.76% |
TFCNN | 33 | 0.52% |
PNN | 4408 | 68.88% |
proposed | 1 | 0.02% |
Indices | Wavelet | PCA | RSIFNN | SRCNN | TFCNN | PNN | Proposed |
---|---|---|---|---|---|---|---|
ERGAS↓ | 2.3994 | 15.566 | 1.4773 | 2.1493 | 1.1924 | 1.7465 | 1.1603 |
Q↑ | 0.5999 | 0.3551 | 0.8049 | 0.6804 | 0.8503 | 0.7792 | 0.8584 |
UIQI↑ | 0.9949 | 0.8035 | 0.9977 | 0.9959 | 0.9984 | 0.9972 | 0.9984 |
CC↑ | 0.9674 | 0.6077 | 0.9877 | 0.9736 | 0.992 | 0.9803 | 0.9927 |
SAM↓ | 0.0873 | 0.2535 | 0.0532 | 0.0779 | 0.0426 | 0.0633 | 0.0407 |
SSIM↑ | 0.8558 | 0.5449 | 0.9422 | 0.8906 | 0.9604 | 0.9318 | 0.9638 |
PSNR↑ | 33.0496 | 19.8027 | 37.4499 | 33.9475 | 39.3568 | 35.2184 | 39.5128 |
↓ | 0.0038 | 0.1518 | 0.0019 | 0.0024 | 0.0014 | 0.0034 | 0.0025 |
↑ | 0.7304 | 0.8025 | 0.7321 | 0.7299 | 0.7319 | 0.731 | 0.7318 |
Algorithms | Time Consumption | Parameter Nums |
---|---|---|
RSIFNN | 2 ms/step | 4,132,324 |
SRCNN | 308 us/step | 26,084 |
TFCNN | 1 ms/step | 300,740 |
PNN | 384 us/step | 80,420 |
HARNN | 13 ms/step | 17,249,796 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Han, L.; Tan, R.; Fan, H.; Li, W.; Zhu, H.; Du, B.; Liu, S. Hybrid Attention Based Residual Network for Pansharpening. Remote Sens. 2021, 13, 1962. https://doi.org/10.3390/rs13101962
Liu Q, Han L, Tan R, Fan H, Li W, Zhu H, Du B, Liu S. Hybrid Attention Based Residual Network for Pansharpening. Remote Sensing. 2021; 13(10):1962. https://doi.org/10.3390/rs13101962
Chicago/Turabian StyleLiu, Qin, Letong Han, Rui Tan, Hongfei Fan, Weiqi Li, Hongming Zhu, Bowen Du, and Sicong Liu. 2021. "Hybrid Attention Based Residual Network for Pansharpening" Remote Sensing 13, no. 10: 1962. https://doi.org/10.3390/rs13101962
APA StyleLiu, Q., Han, L., Tan, R., Fan, H., Li, W., Zhu, H., Du, B., & Liu, S. (2021). Hybrid Attention Based Residual Network for Pansharpening. Remote Sensing, 13(10), 1962. https://doi.org/10.3390/rs13101962