A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Proposed Method
2.2. Study Area and Data
2.3. Moving and Fixed-Location Time Series
3. Results
3.1. Diurnal Variation Differences between the Two Time Series
3.2. Comparison of Multiday Changes
3.3. GOCI Data Screening
4. Discussion
4.1. Impacts of Seasonality and Daytime on GOCI Data Processing
4.2. Variation in Spatial Transition
4.3. Difference in Spatiotemporal Transition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stramska, M.; Dickey, T.D. Variability of bio-optical properties of the upper ocean associated with diel cycles in phytoplankton population. J. Geophys. Res. Space Phys. 1992, 97, 17873–17887. [Google Scholar] [CrossRef]
- Loisel, H.; Vantrepotte, V.; Norkvist, K.; Mériaux, X.; Kheireddine, M.; Ras, J.; Pujo-Pay, M.; Combet, Y.; Leblanc, K.; Mauriac, R.; et al. Characterization of the bio-optical anomaly and diurnal variability of the particulate matter, as seen from the scattering and backscattering coefficients, in ultra-oligotrophic eddies of the Mediterranean Sea. Biogeosci. Discuss. 2011, 8, 7859–7919. [Google Scholar] [CrossRef] [Green Version]
- Gould, J.R.W.; Anderson, S.; Lewis, M.D.; Miller, W.D.; Shulman, I.; Smith, G.B.; Smith, T.A.; Wang, D.W.; Wijesekera, H.W. Assessing the impact of tides and atmospheric fronts on submesoscale physical and bio-optical distributions near a coastal convergence zone. Remote Sens. 2020, 12, 553. [Google Scholar] [CrossRef] [Green Version]
- Curran, K.; Hill, P.; Milligan, T.; Mikkelsen, O.; Law, B.; de Madron, X.D.; Bourrin, F. Settling velocity, effective density, and mass composition of suspended sediment in a coastal bottom boundary layer, Gulf of Lions, France. Cont. Shelf Res. 2007, 27, 1408–1421. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, T.; Singh, V.P.; Zhang, J.; Yu, R.; Zhao, W. Diurnal variation of light absorption in the yellow river estuary. Remote Sens. 2018, 10, 542. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, L. Hyperspectral remote sensing of total Phosphorus (TP) in three central Indiana water supply reservoirs. Water Air Soil Pollut. 2011, 223, 1481–1502. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Huang, C.; Zou, J.; Li, Y.; Yang, H.; Shi, K.; Li, J.; Wang, Y.; Chena, X.; Zheng, F. Assessment of NIR-red algorithms for observation of chlorophyll-a in highly turbid inland waters in China. ISPRS J. Photogramm. Remote Sens. 2014, 93, 29–39. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Barnes, B.B.; Lee, Z. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico. Harmful Algae 2017, 66, 40–46. [Google Scholar] [CrossRef]
- Arnone, R.; Vandermuelen, R.; Soto, I.; Ladner, S.; Ondrusek, M.; Yang, H. Diurnal changes in ocean color sensed in satellite imagery. J. Appl. Remote Sens. 2017, 11, 032406. [Google Scholar] [CrossRef] [Green Version]
- Amin, R.; Lewis, M.D.; Lawson, A.; Gould, R.W., Jr.; Martinolich, P.; Li, R.-R.; Ladner, S.; Gallegos, S. Comparative analysis of GOCI ocean color products. Sensors 2015, 15, 25703–25715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.-E.; Park, Y.-J.; Ryu, J.-H.; Choi, J.-K.; Ahn, J.-H.; Min, J.-E.; Son, Y.-B.; Lee, S.-J.; Han, H.-J.; Ahn, Y.-H. Initial validation of GOCI water products against in situ data collected around Korean peninsula for 2010–2011. Ocean Sci. J. 2012, 47, 261–277. [Google Scholar] [CrossRef]
- Min, J.-E.; Choi, J.-K.; Yang, H.; Lee, S.; Ryu, J.-H. Monitoring changes in suspended sediment concentration on the southwestern coast of Korea. J. Coast. Res. 2014, 70, 133–138. [Google Scholar] [CrossRef]
- Kim, W.; Moon, J.-E.; Park, Y.-J.; Ishizaka, J. Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region. Remote Sens. Environ. 2016, 184, 482–495. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Dong, Q.; Song, Q.; Ding, J. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery. Remote Sens. Environ. 2010, 114, 392–403. [Google Scholar] [CrossRef]
- Doxaran, D.; Lamquin, N.; Park, Y.-J.; Mazeran, C.; Ryu, J.-H.; Wang, M.; Poteau, A. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2014, 146, 36–48. [Google Scholar] [CrossRef]
- Lou, X.; Hu, C. Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Wang, M.; Ahn, J.-H.; Jiang, L.; Shi, W.; Son, S.; Park, Y.-J.; Ryu, J.-H. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI). Opt. Express 2013, 21, 3835–3849. [Google Scholar] [CrossRef]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Ahn, Y.-H.; Ishizaka, J.; Yoo, S.; Kim, S.-W.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- Yoon, J.-E.; Lim, J.-H.; Son, S.; Youn, S.-H.; Oh, H.-J.; Hwang, J.-D.; Kwon, J.-I.; Kim, S.-S.; Kim, I.-N. Assessment of satellite-based chlorophyll-a algorithms in eutrophic Korean coastal waters: Jinhae Bay case study. Front. Mar. Sci. 2019, 6, 359. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Ding, J.; Hu, Z.; Cui, W.; Li, S.; Zhang, L. Validation of the remote sensing products retrieved by geostationary ocean color imager in Liaodong Bay in spring. Acta Opt. Sin. 2016, 36, 401002. [Google Scholar] [CrossRef]
- Son, Y.-T.; Park, J.-H.; Nam, S. Summertime episodic chlorophyll a blooms near the east coast of the Korean Peninsula. Biogeosciences 2018, 15, 5237–5247. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Chen, C.-T.A.; Cui, Q. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Lee, B.R.; Eom, J.; Moon, J.-E.; Ryu, J.-H. Application of the Geostationary Ocean Color Imager (GOCI) to mapping the temporal dynamics of coastal water turbidity. Remote Sens. Environ. 2014, 146, 24–35. [Google Scholar] [CrossRef]
- Noh, J.H.; Kim, W.; Son, S.H.; Ahn, J.-H.; Park, Y.-J. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI). Harmful Algae 2018, 73, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, M. Analysis of ocean diurnal variations from the Korean Geostationary Ocean Color Imager measurements using the DINEOF method. Estuar. Coast. Shelf Sci. 2016, 180, 230–241. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, M. Diurnal currents in the bohai sea derived from the Korean Geostationary Ocean Color Imager. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1437–1450. [Google Scholar] [CrossRef]
- Lumpkin, R.; Özgökmen, T.; Centurioni, L. Advances in the application of surface drifters. Annu. Rev. Mar. Sci. 2017, 9, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Cao, Z.; Shen, Y.; Chen, J. Improving surface current estimation from Geostationary Ocean Color Imager using tidal ellipse and angular limitation. J. Geophys. Res. Oceans 2019, 124, 4322–4333. [Google Scholar] [CrossRef]
- Park, J.-E.; Park, K.-A.; Ullman, D.S.; Cornillon, P.C.; Park, Y.-J. Observation of diurnal variations in mesoscale eddy sea-surface currents using GOCI data. Remote. Sens. Lett. 2016, 7, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Park, Y.; Kim, W.; Kim, Y.H. Characterization of submesoscale turbulence in the east/Japan sea using Geostationary Ocean Color Satellite Images. Geophys. Res. Lett. 2019, 46, 8214–8223. [Google Scholar] [CrossRef]
- Paduan, J.D.; Washburn, L. High-Frequency radar observations of ocean surface currents. Annu. Rev. Mar. Sci. 2013, 5, 115–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, M.R.; Brink, K.H.; Booth, C.R.; Blasco, D.; Swenson, M.S.; Davis, C.O.; Codispoti, L.A. Scales of variability of bio-optical properties as observed from near-surface drifters. J. Geophys. Res. Space Phys. 1995, 100, 13345. [Google Scholar] [CrossRef] [Green Version]
- Davis, R.E. Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res. Space Phys. 1985, 90, 4756–4772. [Google Scholar] [CrossRef]
- Poulain, P.; Gerin, R. Assessment of the water-following capabilities of CODE drifters based on direct relative flow measurements. J. Atmos. Ocean. Technol. 2019, 36, 621–633. [Google Scholar] [CrossRef]
- Centurioni, L.; Oceanography, S.I.O.; Hormann, V.; Chao, Y.; Reverdin, G.; Font, J.; Lee, D.-K. Sea surface salinity observations with lagrangian drifters in the tropical North Atlantic during SPURS: Circulation, fluxes, and comparisons with remotely sensed salinity from aquarius. Oceanography 2015, 28, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, I.D.; Torbati, R.Z.; Taylor, R.S. Relative influences of the metocean forcings on the drifting ice pack and estimation of internal ice stress gradients in the L abrador S ea. J. Geophys. Res. Oceans 2017, 122, 5970–5997. [Google Scholar] [CrossRef]
- Yu, F.; Li, J.; Zhao, Y.; Li, Q.; Chen, G. Calibration of backward-in-time model using drifting buoys in the East China Sea. Oceanology 2017, 59, 238–247. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Han, H.-J.; Cho, S.; Park, Y.-J.; Ahn, Y.-H. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Santer, R.; Schmechtig, C. Adjacency effects on water surfaces: Primary scattering approximation and sensitivity study. Appl. Opt. 2000, 39, 361–375. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: A statistical assessment. Remote Sens. Environ. 2016, 174, 301–313. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Chen, C.-T.A. Chemical and physical fronts in the Bohai, Yellow and East China seas. J. Mar. Syst. 2009, 78, 394–410. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Wei, Q.; Yang, F.; Dong, M.; Li, D.; Gao, Z.; Yao, Q. Intra- and inter-seasonal variations in the hydrological characteristics and nutrient conditions in the southwestern Yellow Sea during spring to summer. Mar. Pollut. Bull. 2020, 156, 111139. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Yang, Q.; Yang, H.-J.; Liu, H.; Zhu, Y.; Mu, Y. Analysis on the relationship between fisheries economic growth and marine environmental pollution in China’s coastal regions. Sci. Total. Environ. 2020, 713, 136641. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sui, J.; Ma, L.; Li, X.; Wang, H.; Zhang, B. Temporal variation of macrobenthic community zonation over nearly 60 years and the effects of latitude and depth in the southern Yellow Sea and East China Sea. Sci. Total. Environ. 2020, 739, 139760. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Gan, J.; Hu, J.; Wu, H.; Cai, Z.; Deng, Y. Progress on circulation dynamics in the East China Sea and southern Yellow Sea: Origination, pathways, and destinations of shelf currents. Prog. Oceanogr. 2021, 193, 102553. [Google Scholar] [CrossRef]
- Ichikawa, H.; Beardsley, R.C. The Current System in the Yellow and East China Seas. J. Oceanogr. 2002, 58, 77–92. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Hyun Yang, H.J.H.; Ryu, J.H.; Park, Y.J. Quantitative estimation of the suspended sediment movements in the coastal region using GOCI. J. Coast. Res. 2013, 65, 1367–1372. [Google Scholar] [CrossRef]
- Ferrari, G.; Dowell, M. CDOM Absorption characteristics with relation to fluorescence and salinity in coastal areas of the southern Baltic Sea. Estuar. Coast. Shelf Sci. 1998, 47, 91–105. [Google Scholar] [CrossRef]
- Concha, J.; Mannino, A.; Franz, B.; Kim, W. Uncertainties in the Geostationary Ocean Color Imager (GOCI) remote sensing reflectance for assessing diurnal variability of biogeochemical processes. Remote Sens. 2019, 11, 295. [Google Scholar] [CrossRef] [Green Version]
Drifting Buoy | Duration | Total Days | Scope of Longitude | Scope of Latitude | Total Sites |
---|---|---|---|---|---|
No. 1 | 5 June 2012–10 August 2012 | 66 | 120°–122°E | 33°–37°N | 1460 |
No. 2 | 3 June 2012–20 August 2012 | 78 | 120°–124°E | 34°–37°N | 1974 |
No. 3 | 3 June 2012–20 August 2012 | 78 | 121°–125°E | 34°–39°N | 1765 |
No. 4 | 4 June 2012–4 July 2012 | 31 | 120°–122°E | 33°–36°N | 665 |
No. 5 | 3 June 2012–19 July 2012 | 46 | 120°–122°E | 33°–37°N | 982 |
No. 6 | 3 June 2012–11 June 2012 | 8 | 120°–121°E | 33°–35°N | 164 |
No. 7 | 30 June 2012–26 August 2013 | 28 | 122°–127°E | 29°–34°N | 375 |
Drifting Buoy | Total Days | Matched Days | Daily Matchup Sites |
---|---|---|---|
No. 1 | 66 | 6 | 4, 4, 6, 4, 4, 8 |
No. 2 | 78 | 10 | 4, 8, 7, 6, 4, 7, 4, 5, 8, 7 |
No. 3 | 78 | 9 | 4, 8, 8, 8, 5, 5, 5, 4, 7 |
No. 4 | 31 | 1 | 4 |
No. 5 | 46 | 2 | 4, 4 |
No. 6 | 8 | 0 | 0 |
No. 7 | 28 | 5 | 8, 7, 6, 5, 7 |
Drifting Buoy | Date | Series | ag440 | Chl a | TSS | Rrs(490) | Rrs(555) | |
---|---|---|---|---|---|---|---|---|
No. 2 | 11 July 2012 | Moving | mean | 0.077 | 0.804 | 0.559 | 0.005 | 0.003 |
variance | 18.9% | 16.2% | 17.4% | 20.0% | 12.9% | |||
Fixed | mean | 0.077 | 0.822 | 0.555 | 0.005 | 0.003 | ||
variance | 19.6% | 18.0% | 17.2% | 20.4% | 9.7% | |||
25 July 2012 | Moving | mean | 0.159 | 2.015 | 1.322 | 0.003 | 0.003 | |
variance | 16.5% | 20.9% | 34.9% | 25.0% | 12.9% | |||
Fixed | mean | 0.139 | 1.939 | 0.976 | 0.002 | 0.002 | ||
variance | 19.4% | 28.0% | 28.3% | 83.3% | 72.7% | |||
5 August 2012 | Moving | mean | 0.096 | 1.529 | 0.746 | 0.005 | 0.004 | |
variance | 4.5% | 17.6% | 4.4% | 5.7% | 2.7% | |||
Fixed | mean | 0.115 | 1.878 | 0.952 | 0.005 | 0.004 | ||
variance | 18.5% | 22.7% | 21.5% | 7.5% | 7.1% | |||
No. 3 | 4 June 2012 | Moving | mean | 0.066 | 0.567 | 0.465 | 0.005 | 0.003 |
variance | 6.7% | 10.9% | 9.2% | 4.0% | 3.5% | |||
Fixed | mean | 0.06 | 0.457 | 0.414 | 0.005 | 0.003 | ||
variance | 13.1% | 16.3% | 16.3% | 15.2% | 11.5% | |||
2 August 2012 | Moving | mean | 0.069 | 0.588 | 0.442 | 0.004 | 0.003 | |
variance | 18.6% | 37.0% | 22.2% | 14.0% | 16.0% | |||
Fixed | mean | 0.09 | 0.926 | 0.601 | 0.004 | 0.003 | ||
variance | 22.0% | 56.9% | 23.6% | 37.8% | 32.0% | |||
No. 7 | 1 August 2012 | Moving | mean | 0.107 | 3.184 | 0.88 | 0.005 | 0.004 |
variance | 39.7% | 76.8% | 45.8% | 40.2% | 39.0% | |||
Fixed | mean | 0.11 | 3.341 | 0.904 | 0.005 | 0.004 | ||
variance | 42.1% | 89.4% | 47.9% | 42.2% | 40.0% |
Series | ag440 | Chl a | TSS | a(490) | a(555) | bb(490) | bb(555) | |
---|---|---|---|---|---|---|---|---|
Moving | mean | 0.087 | 1.376 | 0.649 | 0.102 | 0.094 | 0.010 | 0.007 |
max | 0.211 | 7.702 | 2.313 | 0.539 | 0.359 | 0.054 | 0.039 | |
min | 0.026 | 0.138 | 0.062 | 0.039 | 0.007 | 0.003 | 0.001 | |
range | 0.184 | 7.564 | 2.251 | 0.500 | 0.352 | 0.1051 | 0.038 | |
Fixed | mean | 0.088 | 1.338 | 0.660 | 0.098 | 0.096 | 0.010 | 0.007 |
max | 0.202 | 9.183 | 2.300 | 0.624 | 0.351 | 0.040 | 0.036 | |
min | 0.026 | 0.119 | 0.132 | 0.038 | 0.009 | 0.004 | 0.001 | |
range | 0.176 | 9.064 | 2.167 | 0.586 | 0.341 | 0.037 | 0.035 |
Drifting Buoy | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 7 |
---|---|---|---|---|---|---|
Average speed (km h−1) | 0.80 | 1.24 | 1.88 | 1.89 | 1.18 | 1.45 |
Window size | ag440 | Chl a | TSS | |
---|---|---|---|---|
1 × 1 | Difference | 0.007 | 0.142 | 0.079 |
Percentage | 8.8% | 11.0% | 12.2% | |
3 × 3 | Difference | 0.006 | 0.111 | 0.059 |
Percentage | 7.6% | 9.5% | 8.8% | |
5 × 5 | Difference | 0.004 | 0.079 | 0.049 |
Percentage | 4.8% | 6.6% | 8.5% |
Location | Series | ag440 | Chl a | TSS | a(490) | a(555) | bb(490) | bb(555) | |
---|---|---|---|---|---|---|---|---|---|
Central region of the Yellow and East China Seas | Moving | mean | 0.080 | 1.377 | 0.554 | 0.004 | 0.006 | 0.092 | 0.089 |
variance | 41.5% | 88.8% | 51.8% | 32.7% | 243.3% | 73.3% | 55.7% | ||
Fixed | mean | 0.082 | 1.311 | 0.598 | 0.088 | 0.089 | 0.008 | 0.006 | |
variance | 37.8% | 82.5% | 51.2% | 78.4% | 50.5% | 63.8% | 70.0% | ||
Offshore | Moving | mean | 0.116 | 1.674 | 2.238 | 0.181 | 0.140 | 0.036 | 0.030 |
variance | 53.1% | 84.9% | 151.1% | 86.8% | 69.8% | 145.1% | 159.1% | ||
Fixed | mean | 0.114 | 1.709 | 2.193 | 0.162 | 0.129 | 0.029 | 0.024 | |
variance | 51.8% | 85.0% | 154.5% | 82.0% | 66.3% | 148.0% | 166.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Guan, W.; Chen, J.; Cao, Z.; Qiao, F. A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas. Remote Sens. 2021, 13, 2115. https://doi.org/10.3390/rs13112115
Xu Y, Guan W, Chen J, Cao Z, Qiao F. A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas. Remote Sensing. 2021; 13(11):2115. https://doi.org/10.3390/rs13112115
Chicago/Turabian StyleXu, Yuying, Weibing Guan, Jianyu Chen, Zhenyi Cao, and Feng Qiao. 2021. "A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas" Remote Sensing 13, no. 11: 2115. https://doi.org/10.3390/rs13112115
APA StyleXu, Y., Guan, W., Chen, J., Cao, Z., & Qiao, F. (2021). A Novel Approach to Obtain Diurnal Variation of Bio-Optical Properties in Moving Water Parcel Using Integrated Drifting Buoy and GOCI Data: A Case Study in Yellow and East China Seas. Remote Sensing, 13(11), 2115. https://doi.org/10.3390/rs13112115