Modeling Diameter Distributions with Six Probability Density Functions in Pinus halepensis Mill. Plantations Using Low-Density Airborne Laser Scanning Data in Aragón (Northeast Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Lidar Metrics
2.3. Diameter Distribution Models and Fitting
2.3.1. The Weibull Function
2.3.2. The Beta Function
2.3.3. The Generalized Beta Distribution (GBD)
2.3.4. The Johnson’s SB Function
2.3.5. The Gamma Function
2.4. Goodness of Fit Evaluation
2.5. Recovering the Parameters of the Distributions from LiDAR Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Corte, A.P.D.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Almeyda Zambrano, A.M.; Prata, G.; Alves de Almeida, D.R.; Trautenmüller, J.W.; et al. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric. 2020, 179, 105815. [Google Scholar] [CrossRef]
- Wagner, W.; Hollaus, M.; Briese, C.; Ducic, V. 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int. J. Remote Sens. 2008, 29, 1433–1452. [Google Scholar] [CrossRef] [Green Version]
- Engelstand, P.S.; Falkowski, M.; Wolter, P.; Poznanovic, A.; Johnson, P. Estimating Canopy Fuel Attributes from Low-Density LiDAR. Fire 2019, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Kotivuori, E.; Kukkonen, M.; Mehtätalo, L.; Maltamo, M.; Korhonen, L.; Packalen, P. Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sens. Environ. 2020, 237, 111404. [Google Scholar] [CrossRef]
- Maltamo, M.; Gobakken, T. Predicting tree diameter distributions. In Forestry Applications of Airborne Laser Scanning: Concepts and Cases Studies; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 269–292. [Google Scholar]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Gorgoso, J.J.; Alvarez-Gonzalez, J.G.; Rojo, A.; Grandas-Arias, J.A. Modelling diameter distributions of Betula alba L. stands in northwest Spain with the two-parameter Weibull function. For. Syst. 2007, 16, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Gorgoso-Varela, J.J.; Rojo-Alboreca, A.; Afif-Khouri, E.; Barrio-Anta, M. Modelling diameter distributions of birch (Betula alba L.) and pedunculate oak (Quercus robur L.) stands in northwest Spain with the beta distribution. Invest. Agrar. Sist. Recur. For. 2008, 17, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Arias-Rodil, M.; Diéguez-Aranda, U.; Álvarez-González, J.G.; Pérez-Cruzado, C.; Castedo-Dorado, F.; González-Ferreiro, E. Modeling diameter distributions in radiata pine plantations in Spain with existing countrywide LiDAR data. Ann. For. Sci. 2018, 75, 36. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, D.N.; Soares, P.; Guerra-Hernández, J.; Pereira, L.; González-Ferreiro, E.; Castedo-Dorado, F.; Tomé, M. Comparing Johnson’s SB and Weibull Functions to Model the Diameter Distribution of Forest Plantations through ALS data. Remote Sens. 2019, 11, 2792. [Google Scholar] [CrossRef] [Green Version]
- Schnur, G.L. Diameter distributions for old-field loblolly pine stands in Maryland. J. Agric. Res. 1934, 49, 731–743. [Google Scholar]
- Sghaier, T.; Cañellas, I.; Calama, R.; Sánchez-González, M. Modelling diameter distribution of Tetraclinis articulata in Tunisia using normal and Weibull distributions with parameters depending on stand variables. iForest 2016, 9, 702–709. [Google Scholar] [CrossRef]
- Podlaski, R. Characterization of diameter distribution data in near-natural forests using the Birnbaum–Saunders distribution. Can. J. For. Res. 2008, 38, 518–527. [Google Scholar] [CrossRef]
- Palahí, M.; Pukkala, T.; Blasco, E.; Trasobares, A. Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain). Eur. J. For. Res. 2007, 126, 563–571. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Davis, C.J. Modeling the joint distribution of tree diameters and heights by bivariate generalized Beta distribution. For. Sci. 2002, 48, 47–58. [Google Scholar]
- Mateus, A.; Tomé, M. Modelling the diameter distribution of eucalyptus plantations with Johnson’s SB probability density function: Parameters recovery from a compatible system of equations to predict stand variables. Ann. For. Sci. 2011, 68, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Pogoda, P.; Ochał, W.; Orzeł, S. Modeling Diameter Distribution of Black Alder (Alnus glutinosa (L.) Gaertn.) Stands in Poland. Forests 2019, 10, 412. [Google Scholar] [CrossRef] [Green Version]
- Gobakken, T.; Næsset, E. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scand. J. For. Res. 2004, 19, 529–542. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E. Weibull and percentile models for lidar-based estimation of basal area distribution. Scand. J. For. Res. 2005, 20, 490–502. [Google Scholar] [CrossRef]
- Del Río, M.; Calama, R.; Montero, G. Selvicultura de Pinus halepensis Mill. In Compendio de Selvicultura Aplicada en España; Serrada, R., Montero, G., Reque, J.A., Eds.; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria: Madrid, España, 2008; pp. 289–312. [Google Scholar]
- Rojo-Alboreca, A.; Cabanillas-Saldaña, A.M.; Barrio-Anta, M.; Notivol-Paíno, E.; Gorgoso-Varela, J.J. Site index curves for natural Aleppo pine forests in the central Ebro Valley (Spain). Madera Bosques 2017, 23, 143–159. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. Version 3.50. USDA Forest Service—Pacific Northwest Research Station. 2015. Available online: http://forsys.cfr.washington.edu/fusion/fusionlatest.html (accessed on 31 January 2016).
- Bailey, R.L.; Dell, T.R. Quantifying Diameter Distributions with the Weibull Function. For. Sci. 1973, 19, 97–104. [Google Scholar]
- Gerald, C.F.; Wheatley, P.O. Applied Numerical Analysis, 4th ed.; Addison-Wesley Publishing Co.: Reading, MA, USA, 1989. [Google Scholar]
- Loetsch, F.; Zöhrer, F.; Haller, K.E. Forest Inventory 2; Verlagsgesellschaft. BLV: Munich, Germany, 1973; 469p. [Google Scholar]
- Maltamo, M.; Puumalaine, J.; Päivinen, R. Comparison of beta and Weibull functions for modelling basal area diameter distribution in stands of Pinus sylvestris and Picea abies. Scan. J. For. Res. 1995, 10, 284–295. [Google Scholar] [CrossRef]
- Gorgoso-Varela, J.J.; Ogana, F.N.; Ige, P.O. A comparison between derivative and numerical optimization methods used for diameter distribution estimation. Scand. J. For. Res. 2020, 35, 156–164. [Google Scholar] [CrossRef]
- Johnson, N.L. Systems of frequency curves generated by methods of translation. Biometrika 1949, 36, 149–176. [Google Scholar] [CrossRef]
- Scolforo, J.R.S.; Thierschi, A. Estimativas e testes da distribuição de frequência diâmétrica para Eucalyptus camaldulensis, através da distribuição SB, por diferentes métodos de ajuste. Sci. For. 1998, 54, 91–103. [Google Scholar]
- Nelson, T.C. Diameter distribution and growth of loblolly pine. For. Sci. 1964, 10, 105–115. [Google Scholar]
- Gorgoso, J.J.; Rojo, A.; Cámara-Obregón, A.; Diéguez-Aranda, U. A comparison of estimation methods for fitting Weibull, Johnson’s SB and beta functions to Pinus pinaster, Pinus radiata and Pinus sylvestris stands in northwest Spain. For. Syst. 2012, 21, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q. Predicting parameters of a Weibull function for modeling diameter distribution. For. Sci. 2004, 50, 682–685. [Google Scholar] [CrossRef]
- Lilliefors, H.W. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Wang, M. Distributional Modelling in Forestry and Remote Sensing. Ph.D. Thesis, University of Greenwich, London, UK, 2005; 187p. [Google Scholar]
- Frazier, J.R. Compatible Whole-Stand and Diameter Distribution Models for Loblolly Pine. Ph.D. Thesis, Virginia Tech University, Blacksburg, VA, USA, 1981. Unpublished. [Google Scholar]
- Thomas, V.; Oliver, R.D.; Lim, K.; Woods, M. LiDAR and Weibull modeling of diameter and basal area. For. Chron. 2008, 84, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Cao, L.; Mulverhill, C.; Liu, H.; Pang, Y.; Li, Z. Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forest. Forests 2019, 10, 125. [Google Scholar] [CrossRef] [Green Version]
- Breidenbach, J.; Gläser, C.; Schmidt, M. Estimation of diameter distributions by means of airborne laser scanner data. Can. J. For. Res. 2008, 38, 1611–1620. [Google Scholar] [CrossRef]
- Treitz, P.; Lim, K.; Woods, M.; Pitt, D.; Nesbitt, D.; Etheridge, D. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sens. 2012, 4, 830–848. [Google Scholar] [CrossRef] [Green Version]
Species | Variable | Mean | Max | Min | SD |
---|---|---|---|---|---|
Pinus halepensis | dg | 17.8 | 30.6 | 11.7 | 5.1 |
dmed | 17.3 | 29.6 | 11.4 | 4.8 | |
dmax | 25.7 | 49.6 | 18.8 | 7.4 | |
N | 1054 | 3200 | 176 | 588.4 | |
Ho | 10.1 | 19.1 | 6.2 | 3.2 | |
G | 24.1 | 58.9 | 6.3 | 11.9 | |
LRD | 1.070 | 2.222 | 0.453 | 0.421 |
Variables Related to Height Distribution (m) | Description |
LH_MIN, LH_MAX, LH_MEAN | Minimum, maximum and mean height |
LH_MODE, LH_MEDIAN, LH_SD, LH_CV | Mode, median, standard deviation and height’s coefficient of variation |
LH_SK, LH_KUR | Skewness and kurtosis |
LH_IQ | Interquartile amplitude |
LH_AAD | Mean absolute deviation |
LH_MAD_MEDIAN, LH_MAD_MODE | Median of the absolute deviations from the overall height median (LH_MAD_MEDIAN) and mode (LH_MAD_MODE) |
LH_L1, LH_L2…, LH_L4 | L moments |
INT_L_SK, INT_L_KUR | Linear combinations of L moments (skewness and kurtosis) |
LH_P05,…, LH_P95 | Percentiles |
LH_P25; LH_P75 | First and third quartiles |
Variables Related to Canopy Closure (%) | Description |
LFCC | Percentage of first returns above 2 m |
LFCC_MEAN | Percentage of first returns above LH_MEAN |
LFCC_MODE | Percentage of first returns above LH_MODE |
LFCC_ALL | Percentage of all returns above 2 m |
LFCC_ALL_MEAN | Percentage of all returns above LH_MEAN |
LFCC_ALL_MODE | Percentage of all returns above LH_MODE |
ALL_MEAN_FIRST | 100* all returns above LH_MEAN / total first returns |
ALL_FIRST | 100* all returns above 2 m / total first returns |
R2_COUNT | Number of first returns above 2 m |
CANOPY | Canopy relief ratio: (hmean − hmin)/(hmax − hmin) |
Function | Step | Param | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Weibull-2P | Fitting | b | 18.757 | 5.072 | 12.415 | 32.084 |
c | 4.905 | 1.125 | 2.163 | 8.020 | ||
Recovery | b | 18.918 | 4.614 | 13.699 | 33.740 | |
c | 4.873 | 0.825 | 2.215 | 6.577 | ||
Weibull-3P | Fitting | a | 7.184 | 1.750 | 5.625 | 14.100 |
b | 11.222 | 4.005 | 6.312 | 24.255 | ||
c | 2.598 | 0.460 | 1.535 | 3.560 | ||
Recovery | a | 7.500 | - | 7.500 | 7.500 | |
b | 11.008 | 4.637 | 5.513 | 25.319 | ||
c | 2.489 | 0.619 | 1.245 | 3.646 | ||
beta | Fitting | c | 0.006 | 0.015 | 1.47 × 10–6 | 0.107 |
L | 7.184 | 1.750 | 5.625 | 14.100 | ||
U | 25.739 | 7.403 | 16.700 | 49.600 | ||
α | 1.191 | 0.633 | 0.250 | 2.574 | ||
γ | 1.015 | 0.720 | 0.166 | 3.178 | ||
Recovery | c | 0.010 | 0.015 | 4.34 × 10–7 | 0.069 | |
L | 7.500 | - | 7.500 | 7.500 | ||
U | 26.100 | 7.229 | 18.000 | 55.000 | ||
α | 0.972 | 0.690 | 0.017 | 3.023 | ||
γ | 0.734 | 0.488 | 0.046 | 2.003 | ||
Generalized beta | Fitting | 471.180 | 925.744 | 1.251 | 5827.044 | |
B1 | 7.184 | 1.750 | 5.625 | 14.100 | ||
B2 | 25.739 | 7.403 | 16.700 | 49.600 | ||
B3 | 2.253 | 1.034 | 0.543 | 4.885 | ||
B4 | 4.285 | 1.806 | 0.358 | 9.363 | ||
Recovery | 365.657 | 868.723 | 1.428 | 5125.128 | ||
B1 | 7.500 | - | 7.500 | 7.500 | ||
B2 | 26.104 | 7.222 | 18.286 | 55.318 | ||
B3 | 2.057 | 1.100 | 0.435 | 4.647 | ||
B4 | 4.116 | 1.015 | 0.974 | 6.354 | ||
Johnson’s SB | Fitting | ε | 7.184 | 1.750 | 5.625 | 14.100 |
λ | 25.739 | 7.403 | 16.700 | 49.600 | ||
γ | 0.727 | 0.344 | 0.027 | 1.379 | ||
δ | 1.327 | 0.235 | 0.630 | 1.879 | ||
Recovery | ε | 7.500 | - | 7.500 | 7.500 | |
λ | 26.104 | 7.222 | 18.286 | 55.318 | ||
γ | 0.801 | 0.409 | −0.152 | 1.457 | ||
δ | 1.295 | 0.190 | 0.698 | 1.724 | ||
gamma-2P | Fitting | α | 19.906 | 8.426 | 4.636 | 48.331 |
β | 1.062 | 0.815 | 0.382 | 5.329 | ||
Recovery | α | 18.594 | 5.410 | 4.398 | 31.558 | |
β | 1.089 | 0.802 | 0.562 | 5.093 |
Function | Dn | W2 | Bias | MSE |
---|---|---|---|---|
Weibull-2P | 0.146922 | 0.081863 | 0.003424 | 0.002009 |
Weibull-3P | 0.150761 | 0.046157 | 0.002637 | 0.001904 |
beta | 0.138560 | 0.062044 | 0.001643 | 0.001851 |
Generalized beta | 0.153656 | 0.048215 | 0.002563 | 0.001879 |
Johnson’s SB | 0.162578 | 0.043088 | 0.002276 | 0.001892 |
gamma-2P | 0.164750 | 0.054360 | 0.002736 | 0.001996 |
Equation | Dep var | Independent Variable | Param | Param Estim | R2 | RMSE | RMSE% | |
---|---|---|---|---|---|---|---|---|
(28) | dmax | Intercept | 6.733 | <0.0001 | 0.873 | 2.758 | 10.56 | |
LH_AAD | 8.143 | <0.0001 | ||||||
LH_P95 | 7.728 | <0.0001 | ||||||
(29) | dg | Intercept | 5.329 | <0.0001 | 0.750 | 2.542 | 14.24 | |
LH_P90 | 1.335 | <0.0001 | ||||||
(30) | dmed | Intercept | −1.789 | <0.0001 | 0.724 | 2.549 | 14.72 | |
LH_MAD_MEDIAN | 1.049 | <0.0001 |
Function | Dn | W2 | Bias | MSE | KS Acceptance (%) |
---|---|---|---|---|---|
Weibull-2P | 0.282500 | 0.498277 | 0.004303 | 0.002732 | 28 (56%) |
Weibull-3P | 0.286170 | 0.497091 | 0.003619 | 0.002746 | 26 (52%) |
beta | 0.254078 | 0.381916 | 0.003744 | 0.002649 | 35 (70%) |
Generalized beta | 0.264840 | 0.389917 | 0.003673 | 0.002711 | 33 (66%) |
Johnson’s SB | 0.273945 | 0.411657 | 0.003578 | 0.002851 | 32 (64%) |
Gamma-2P | 0.272107 | 0.398073 | 0.004047 | 0.002792 | 34 (68%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorgoso-Varela, J.J.; Ponce, R.A.; Rodríguez-Puerta, F. Modeling Diameter Distributions with Six Probability Density Functions in Pinus halepensis Mill. Plantations Using Low-Density Airborne Laser Scanning Data in Aragón (Northeast Spain). Remote Sens. 2021, 13, 2307. https://doi.org/10.3390/rs13122307
Gorgoso-Varela JJ, Ponce RA, Rodríguez-Puerta F. Modeling Diameter Distributions with Six Probability Density Functions in Pinus halepensis Mill. Plantations Using Low-Density Airborne Laser Scanning Data in Aragón (Northeast Spain). Remote Sensing. 2021; 13(12):2307. https://doi.org/10.3390/rs13122307
Chicago/Turabian StyleGorgoso-Varela, J. Javier, Rafael Alonso Ponce, and Francisco Rodríguez-Puerta. 2021. "Modeling Diameter Distributions with Six Probability Density Functions in Pinus halepensis Mill. Plantations Using Low-Density Airborne Laser Scanning Data in Aragón (Northeast Spain)" Remote Sensing 13, no. 12: 2307. https://doi.org/10.3390/rs13122307
APA StyleGorgoso-Varela, J. J., Ponce, R. A., & Rodríguez-Puerta, F. (2021). Modeling Diameter Distributions with Six Probability Density Functions in Pinus halepensis Mill. Plantations Using Low-Density Airborne Laser Scanning Data in Aragón (Northeast Spain). Remote Sensing, 13(12), 2307. https://doi.org/10.3390/rs13122307