Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plastic Samples Description
2.2. Water and Vegetation Features
2.3. Experimental Setup
2.4. Data Preparation
2.5. Data Analysis
2.6. Satellite Multispectral Indices for Floating Debris
3. Results and Discussion
3.1. Spectral Analyses
3.2. Linear Discriminant Analyses and Comparison with Satellite Remote Sensing Approaches
3.2.1. Separating Floating Debris from Water
3.2.2. Separating Plastic from Vegetation
3.2.3. Comparison of Satellite-Derived Products with LDA Results
4. Synthesis and Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gallo, F.; Fossi, C.; Weber, R.; Santillo, D.; Sousa, J.; Ingram, I.; Nadal, A.; Romano, D. Marine litter plastics and microplastics and their toxic chemicals components: The need for urgent preventive measures. Environ. Sci. Eur. 2018, 30, 13. [Google Scholar] [CrossRef]
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Meijer, L.J.; van Emmerik, T.; van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef]
- Kiessling, T.; Knickmeier, K.; Kruse, K.; Brennecke, D.; Nauendorf, A.; Thiel, M. Plastic Pirates sample litter at rivers in Germany—Riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 2019, 245, 545–557. [Google Scholar] [CrossRef]
- van Emmerik, T.; Seibert, J.; Strobl, B.; Etter, S.; Den Oudendammer, T.; Rutten, M.; bin Ab Razak, M.S.; van Meerveld, I. Crowd-based observations of riverine macroplastic pollution. Front. Earth Sci. 2020, 8, 298. [Google Scholar] [CrossRef]
- Gasperi, J.; Dris, R.; Bonin, T.; Rocher, V.; Tassin, B. Assessment of floating plastic debris in surface water along the Seine River. Environ. Pollut. 2014, 195, 163–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahens, L.; Strady, E.; Kieu-Le, T.-C.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Tasseron, P.; Zinsmeister, H.; Rambonnet, L.; Hiemstra, A.-F.; Siepman, D.; van Emmerik, T. Plastic Hotspot Mapping in Urban Water Systems. Geosciences 2020, 10, 342. [Google Scholar] [CrossRef]
- van Calcar, C.; van Emmerik, T. Abundance of plastic debris across European and Asian rivers. Environ. Res. Lett. 2019, 14, 124051. [Google Scholar] [CrossRef] [Green Version]
- Vriend, P.; van Emmerik, T.; Roebroek, C.T. Same but different: A framework to design and compare riverbank plastic monitoring strategies. Front. Water 2020, 2, 3791. [Google Scholar] [CrossRef]
- Roebroek, C.T.J.; Hut, R.; Vriend, P.; de Winter, W.; Boonstra, M.; van Emmerik, T.H.M. Disentangling Variability in Riverbank Macrolitter Observations. Environ. Sci. Technol. 2021, 55, 4932–4942. [Google Scholar] [CrossRef] [PubMed]
- van Lieshout, C.; van Oeveren, K.; van Emmerik, T.; Postma, E. Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth Space Sci. 2020, 7, e2019EA000960. [Google Scholar] [CrossRef]
- Garaba, S.P.; Dierssen, H.M. Hyperspectral ultraviolet to shortwave infrared characteristics of marine-harvested, washed-ashore and virgin plastics. Earth Syst. Sci. Data 2020, 12, 77–86. [Google Scholar] [CrossRef] [Green Version]
- De Giglio, M.; Dubbini, M.; Cortesi, I.; Maraviglia, M.; Parisi, E.I.; Tucci, G. Plastics waste identification in river ecosystems by multispectral proximal sensing: A preliminary methodology study. Water Environ. J. 2020, 35, 569–579. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Themistocleous, K.; Papoutsa, C.; Michaelides, S.; Hadjimitsis, D. Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 2648. [Google Scholar] [CrossRef]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef] [Green Version]
- Kikaki, A.; Karantzalos, K.; Power, C.A.; Raitsos, D.E. Remotely Sensing the Source and Transport of Marine Plastic Debris in Bay Islands of Honduras (Caribbean Sea). Remote Sens. 2020, 12, 1727. [Google Scholar] [CrossRef]
- Garaba, S.P.; Aitken, J.; Slat, B.; Dierssen, H.M.; Lebreton, L.; Zielinski, O.; Reisser, J. Sensing Ocean Plastics with an Airborne Hyperspectral Shortwave Infrared Imager. Environ. Sci. Technol. 2018, 52, 11699–11707. [Google Scholar] [CrossRef]
- Goddijn-Murphy, L.; Dufaur, J. Proof of concept for a model of light reflectance of plastics floating on natural waters. Mar. Pollut. Bull. 2018, 135, 1145–1157. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Garaba, S.P.; Dierssen, H.M. An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Knaeps, E.; Sterckx, S.; Strackx, G.; Mijnendonckx, J.; Moshtaghi, M.; Garaba, S.P.; Meire, D. Hyperspectral-reflectance dataset of dry, wet and submerged marine litter. Earth Syst. Sci. Data 2021, 13, 713–730. [Google Scholar] [CrossRef]
- Moshtaghi, M.; Knaeps, E.; Sterckx, S.; Garaba, S.; Meire, D. Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Corbari, L.; Maltese, A.; Capodici, F.; Mangano, M.; Sarà, G.; Ciraolo, G. Indoor spectroradiometric characterization of plastic litters commonly polluting the Mediterranean Sea: Toward the application of multispectral imagery. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Serranti, S.; Fiore, L.; Bonifazi, G.; Takeshima, A.; Takeuchi, H.; Kashiwada, S. Microplastics Characterization by Hyperspectral Imaging in the SWIR Range; SPIE: Bellingham, WA, USA, 2019; Volume 11197. [Google Scholar]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Arias Ballesteros, M. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173. [Google Scholar] [CrossRef] [Green Version]
- Lechthaler, S.; Waldschläger, K.; Stauch, G.; Schüttrumpf, H. The Way of Macroplastic through the Environment. Environments 2020, 7, 73. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Cózar, A.; Gimenez, B.C.G.; Barros, T.L.; Kershaw, P.J.; Guilhermino, L. Chapter 17—Macroplastics Pollution in the Marine Environment. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 305–328. [Google Scholar]
- van Emmerik, T.; Schwarz, A. Plastic debris in rivers. WIREs Water 2020, 7, e1398. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, A.E.; Ligthart, T.N.; Boukris, E.; van Harmelen, T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: A review study. Mar. Pollut. Bull. 2019, 143, 92–100. [Google Scholar] [CrossRef] [PubMed]
- van Emmerik, T.; Kieu-Le, T.-C.; Loozen, M.; van Oeveren, K.; Strady, E.; Bui, X.-T.; Egger, M.; Gasperi, J.; Lebreton, L.; Nguyen, P.-D.; et al. A Methodology to Characterize Riverine Macroplastic Emission Into the Ocean. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.-F.; Sun, C. Evaluation of Near-infrared hyperspectral imaging for detection of peanut and walnut powders in whole wheat flour. Appl. Sci. 2018, 8, 1076. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnama, S.; Ganapathiraju, A. Linear discriminant analysis-a brief tutorial. Inst. Signal Inf. Process. 1998, 18, 1–8. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Kim, S.-J.; Magnani, A.; Boyd, S. Robust fisher discriminant analysis. In Advances in Neural Information Processing Systems; Stanford University: Stanford, CA, USA; pp. 659–666.
- Garaba, S.P.; Arias, M.; Corradi, P.; Harmel, T.; de Vries, R.; Lebreton, L. Concentration, anisotropic and apparent colour effects on optical reflectance properties of virgin and ocean-harvested plastics. J. Hazard. Mater. 2020, 124290. [Google Scholar] [CrossRef]
- Moroni, M.; Mei, A.; Leonardi, A.; Lupo, E.; Marca, F.L. PET and PVC Separation with Hyperspectral Imagery. Sensors 2015, 15, 2205–2227. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018, 198, 115–122. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.; Raines, C.; et al. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sens. Environ. 2019, 231, 111176. [Google Scholar] [CrossRef] [PubMed]
- Danson, F.; Steven, M.; Malthus, T.; Clark, J. High-spectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Piarulli, S.; Sciutto, G.; Oliveri, P.; Malegori, C.; Prati, S.; Mazzeo, R.; Airoldi, L. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Chemosphere 2020, 260, 127655. [Google Scholar] [CrossRef]
- Eldin, A.; Akyar, I. Near infra red spectroscopy. Wide Spectra Qual. Control. InTech Rij. Croat. 2011, 237–248. [Google Scholar]
- Richter, R.; Wang, X.; Bachmann, M.; Schläpfer, D. Correction of cirrus effects in Sentinel-2 type of imagery. Int. J. Remote Sens. 2011, 32, 2931–2941. [Google Scholar] [CrossRef]
- Guo, X.; Li, P. Mapping plastic materials in an urban area: Development of the normalized difference plastic index using WorldView-3 superspectral data. ISPRS J. Photogramm. Remote Sens. 2020, 169, 214–226. [Google Scholar] [CrossRef]
- Fu, B.; Burgher, I. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid Environ. 2015, 113, 59–68. [Google Scholar] [CrossRef]
- Balsi, M.; Moroni, M.; Chiarabini, V.; Tanda, G. High-Resolution Aerial Detection of Marine Plastic Litter by Hyperspectral Sensing. Remote Sens. 2021, 13, 1557. [Google Scholar] [CrossRef]
- Mehrubeoglu, M.; Van Sickle, A.; McLauchlan, L. Borrowing least squares analysis from spectral unmixing to classify plastics in SWIR hyperspectral images. In Hyperspectral Imaging and Applications; International Society for Optics and Photonics: Bellingham, WA, USA.
- Hueni, A.; Bertschi, S. Detection of sub-pixel plastic abundance on water surfaces using airborne imaging spectroscopy. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6325–6328. [Google Scholar]
- Bonifazi, G.; Capobianco, G.; Palmieri, R.; Serranti, S. Hyperspectral imaging applied to the waste recycling sector. Spectrosc. Eur. 2019, 3, 8–11. [Google Scholar]
- Pieszczek, L.; Daszykowski, M. Improvement of recyclable plastic waste detection—A novel strategy for the construction of rigorous classifiers based on the hyperspectral images. Chemom. Intell. Lab. Syst. 2019, 187, 28–40. [Google Scholar] [CrossRef]
Type of Plastic | Specific Gravity | Composition Distribution | Optical Properties | Examples |
---|---|---|---|---|
low-density polyethene (LDPE) | 0.91–0.93 | 17–42% | (semi)transparent clear/coloured | cling film, garbage bags, shopping bags |
high-density polyethene (HDPE) | 0.94–0.96 | 17–42% | semi-transparent white/coloured | milk bottles, detergent bottles, sandwich bags |
polystyrene (PS) | 1.04 | 11–17% | opaque white, grey specks | plastic cutlery, food containers, one-use cups |
polypropylene (PP) | 0.83–0.85 | 11–30% | semi-transparent and coloured | chip bags, drinking straws, yoghurt containers |
polyethene terephthalate (PET) | 1.37 | <10% | transparent/clear | soft drink bottles, water bottles, clamshell packages |
Sentinel-2 Band Name | B2 Blue | B3 Green | B4 Red | B5 Red Edge 1 | B6 Red Edge 2 | B7 Red Edge 3 | B8 NIR | B9 Water Vapour | B10 SWIR-Cirrus | B11 SWIR |
---|---|---|---|---|---|---|---|---|---|---|
Central λ (nm) | 490 | 560 | 665 | 705 | 740 | 783 | 842 | 945 | 1375 | 1610 |
λ (nm) | 489.3 | 561.2 | 666.2 | 704.2 | 739.6 | 783.5 | 841.28 | 941.1 | 1377.4 | 1610.6 |
Band number | vis-36 | vis-63 | vis-102 | vis-116 | vis-129 | vis-145 | vis-166 | ir-1 | ir-63 | ir-96 |
Worldview-3 Band Name | Blue | Green | Yellow | Red | Red Edge | Near-IR1 | Near-IR2 | SWIR-1 | SWIR-2 | SWIR-3 |
---|---|---|---|---|---|---|---|---|---|---|
Central λ (nm) | 480 | 545 | 605 | 660 | 725 | 833 | 950 | 1219 | 1570 | 1660 |
λ (nm) | 481.4 | 545.2 | 604.1 | 660.8 | 726.0 | 833.0 | 948.1 | 1222.3 | 1568.1 | 1660.2 |
Band number | vis-33 | vis-57 | vis-79 | vis-100 | vis-124 | vis-163 | ir-2 | ir-41 | ir-90 | ir-103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasseron, P.; van Emmerik, T.; Peller, J.; Schreyers, L.; Biermann, L. Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery. Remote Sens. 2021, 13, 2335. https://doi.org/10.3390/rs13122335
Tasseron P, van Emmerik T, Peller J, Schreyers L, Biermann L. Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery. Remote Sensing. 2021; 13(12):2335. https://doi.org/10.3390/rs13122335
Chicago/Turabian StyleTasseron, Paolo, Tim van Emmerik, Joseph Peller, Louise Schreyers, and Lauren Biermann. 2021. "Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery" Remote Sensing 13, no. 12: 2335. https://doi.org/10.3390/rs13122335
APA StyleTasseron, P., van Emmerik, T., Peller, J., Schreyers, L., & Biermann, L. (2021). Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery. Remote Sensing, 13(12), 2335. https://doi.org/10.3390/rs13122335