Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data
Abstract
:1. Introduction
2. Data and InSAR Data Processing
2.1. Input Data
- (1)
- The ice velocity map of the LCIS is retrieved from six standard Sentinel 1A/B terrain observation with progressive scan (TOPS) Level-1 single look complex (SLC) images acquired in interferometric wide (IW) swath mode. The images were acquired on 15 May 2020 (orbit number: 21589) and 21 May 2020 (orbit number: 32660). These SLC products preserving phase information have been referenced in radar range observation coordinate using the orbit and attitude data from the satellite [21]. The heading angle of the acquired images is around −61.27 degrees, whereas the incidence angle varies approximately from 29 degrees to 42 degrees. Note that the horizontal transmit and horizontal receive (HH) polarization possesses higher signal-to-noise ratio and supplies better amplitude characteristics compared to the horizontal transmit and vertical receive (HV) polarization, implying that the former is more suitable for mapping the ice motion [22]. Therefore, the HH channel is chosen in this paper.
- (2)
- The MEaSUREs BedMachine Antarctica (Version 2) [23] dataset provides the necessary ice thickness (Figure 1a) and the surface topography (Figure 1b) for the modeling manipulation. The bed parameter is derived from the difference between the surface elevation and the ice thickness. The ice thickness and the surface elevation are presented in ice equivalent, which avoids the trouble of correcting for the firn density [24]. These data have a spatial resolution of 500 m and are geolocated in a polar stereographic projection with the standard longitude of E and latitude of S.
2.2. InSAR Processing
3. Mathematical Model of Rigidity
3.1. Ice Velocity Field Recovering
3.2. Inversion for Rigidity
4. Results
5. Discussion
5.1. Analysis of Ice Rigidity Distribution
5.2. Importance of Control Method
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice-shelf melting around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Ingels, J.; Aronson, R.B.; Smith, C.R.; Baco, A.; Bik, H.M.; Blake, J.A.; Brandt, A.; Cape, M.; Demaster, D.; Dolan, E.; et al. Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: Science review and future research. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e682. [Google Scholar] [CrossRef]
- Hogg, A.E.; Gilbert, L.; Shepherd, A.; Muir, A.S.; McMillan, M. Extending the record of Antarctic ice shelf thickness change, from 1992 to 2017. Adv. Space Res. 2020, 68. [Google Scholar] [CrossRef]
- Jansen, D.; Luckman, A.; Kulessa, B.; Holland, P.R.; King, E.C. Marine ice formation in a suture zone on the Larsen C Ice Shelf and its influence on ice shelf dynamics. J. Geophys. Res. Earth Surf. 2013, 118, 1628–1640. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Vaughan, D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 2010, 4, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Jansen, D.; Luckman, A.J.; Cook, A.; Bevan, S.; Kulessa, B.; Hubbard, B.; Holland, P. Brief Communication: Newly developing rift in Larsen C Ice Shelf presents significant risk to stability. Cryosphere 2015, 9, 1223–1227. [Google Scholar] [CrossRef] [Green Version]
- Hogg, A.E.; Gudmundsson, G.H. Impacts of the Larsen-C Ice Shelf calving event. Nat. Clim. Chang. 2017, 7, 540–542. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Joughin, I. Ice-sheet velocity mapping: A combined interferometric and speckle-tracking approach. Ann. Glaciol. 2002, 34, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.J.; Parsons, B.E.; Lu, Z. Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Zainuddin, Z.; Pauline, O. Function approximation using artificial neural networks. WSEAS Trans. Math. 2008, 7, 333–338. [Google Scholar]
- Layberry, R.; Bamber, J. A new ice thickness and bed data set for the Greenland ice sheet: 2. Relationship between dynamics and basal topography. J. Geophys. Res. Atmos. 2001, 106, 33781–33788. [Google Scholar] [CrossRef]
- Kamb, B.; Echelmeyer, K.A. Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol. 1986, 32, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, J.A.; Mickelson, D.M.; Tulaczyk, S.; Krzyszkowski, D.; Junge, F.W. Were deforming subglacial beds beneath past ice sheets really widespread? Quat. Int. 2001, 86, 139–150. [Google Scholar] [CrossRef]
- Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Khazendar, A.; Rignot, E.; Larour, E. Acceleration and spatial rheology of Larsen C ice shelf, Antarctic Peninsula. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- MacAyeal, D.R. Large-scale ice flow over a viscous basal sediment: Theory and application to ice stream B, Antarctica. J. Geophys. Res. Solid Earth 1989, 94, 4071–4087. [Google Scholar] [CrossRef]
- Larour, E.; Rignot, E.; Joughin, I.; Aubry, D. Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- MacAyeal, D.R. A tutorial on the use of control methods in ice-sheet modeling. J. Glaciol. 1993, 39, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Gámez, P.; Navarro, F.J. Glacier surface velocity retrieval using D-InSAR and offset tracking techniques applied to ascending and descending passes of Sentinel-1 data for southern Ellesmere ice caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Rignot, E.; Binder, T.; Blankenship, D.; Drews, R.; Eagles, G.; Eisen, O.; Ferraccioli, F.; Forsberg, R.; Fretwell, P.; et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Cuffey, K.M. A matter of firn. Science 2008, 320, 1596–1597. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, R.; Jäger, M.; Prats-Iraola, P.; De Zan, F.; Geudtner, D. Speckle tracking and interferometric processing of TerraSAR-X TOPS data for mapping nonstationary scenarios. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 1709–1720. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xu, X.; Fialko, Y. Improving burst alignment in TOPS interferometry with bivariate enhanced spectral diversity. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2423–2427. [Google Scholar] [CrossRef]
- Joshi, R.; Kumar, K.; Adhikari, V.P.S. Modelling suspended sediment concentration using artificial neural networks for Gangotri glacier. Hydrol. Process. 2016, 30, 1354–1366. [Google Scholar] [CrossRef]
- Haq, M.A.; Azam, M.F.; Vincent, C. Efficiency of artificial neural networks for glacier ice-thickness estimation: A case study in western Himalaya, India. J. Glaciol. 2021, 1–14. [Google Scholar] [CrossRef]
- Huesken, D.; Lange, J.; Mickanin, C.; Weiler, J.; Asselbergs, F.; Warner, J.; Meloon, B.; Engel, S.; Rosenberg, A.; Cohen, D.; et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 2005, 23, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Rem, B.S.; Käming, N.; Tarnowski, M.; Asteria, L.; Fläschner, N.; Becker, C.; Sengstock, K.; Weitenberg, C. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys. 2019, 15, 917–920. [Google Scholar] [CrossRef]
- Glen, J.W. The creep of polycrystalline ice. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1955, 228, 519–538. [Google Scholar]
- Rommelaere, V.; MacAyeal, D.R. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. Ann. Glaciol. 1997, 24, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Karakashian, O.; Makridakis, C. A space-time finite element method for the nonlinear Schrödinger equation: The continuous Galerkin method. SIAM J. Numer. Anal. 1999, 36, 1779–1807. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gong, F.; Li, Z.; Liu, S.; Shen, Y. Recover Glacier Velocity Fields Derived From the SAR Speckle Tracking Technique Using Artificial Neural Network. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1250–1253. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Butterworth-Heinemann: Burlington, MA, USA, 2010. [Google Scholar]
- MacAyeal, D.R.; Thomas, R.H. The effects of basal melting on the present flow of the Ross Ice Shelf, Antarctica. J. Glaciol. 1986, 32, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Tetzner, D.R. The climate of the Antarctic Peninsula during the twentieth century: Evidence from ice cores. In Antarctica-A Key To Global Change; IntechOpen: London, UK, 2018. [Google Scholar]
T (C) | 0 | −2 | −5 | −10 | −15 | −20 | −25 | −30 | −35 | −40 | −45 | −50 |
B (MPa·s) | 53 | 75 | 86 | 127 | 151 | 180 | 220 | 270 | 333 | 415 | 523 | 630 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, F.; Zhang, K.; Liu, S. Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data. Remote Sens. 2021, 13, 2361. https://doi.org/10.3390/rs13122361
Gong F, Zhang K, Liu S. Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data. Remote Sensing. 2021; 13(12):2361. https://doi.org/10.3390/rs13122361
Chicago/Turabian StyleGong, Faming, Kui Zhang, and Shujun Liu. 2021. "Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data" Remote Sensing 13, no. 12: 2361. https://doi.org/10.3390/rs13122361
APA StyleGong, F., Zhang, K., & Liu, S. (2021). Retrieve Ice Velocities and Invert Spatial Rigidity of the Larsen C Ice Shelf Based on Sentinel-1 Interferometric Data. Remote Sensing, 13(12), 2361. https://doi.org/10.3390/rs13122361