Satellite Measured Ionospheric Magnetic Field Variations over Natural Hazards Sites
Abstract
:1. Introduction
2. Magnetic Field Measurements at Low Earth Orbit Altitudes
2.1. CSES
2.2. Swarm
2.3. Magnetic Field Models and Multi-Experiment Observations
3. Lithospheric Atmospheric Ionospheric Coupling
3.1. Earth-Ionosphere Waveguide
3.2. Acoustic Waves and Atmospheric Gravity Waves
4. Data Processing Method
5. Results
5.1. Volcanoes
Bárðarbunga Caldera Collapse and Effusive Eruptions
5.2. Earthquakes
5.2.1. Earthquake M6.5 Severo-Kurilsk, Russia
5.2.2. Earthquake M7.3 Rio Caribe, Venezuela
5.2.3. Earthquake M8.2 Ndoi Island, Fiji
5.2.4. Earthquake M7.1 Ridgecrest, USA
5.3. Explosions
5.3.1. Baumgarten Natural Gas Hub Technical Failure
5.3.2. Tlahuelilpan Pipeline Explosion
5.4. Rocket Launches
5.4.1. Falcon 9 Launch
5.4.2. Ariane 5 Launch
6. Discussion
7. Materials
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGW | Atmospheric Gravity Wave |
ASI | Italian Space Agency |
ASM | Absolute Scalar Magnetometer |
AW | Acoustic Wave |
CDF | Common Data Format |
CDSM | Coupled Dark State Magnetometer |
CNSA | China National Space Administration |
CSES | China Seismo-Electromagnetic Satellite (Zhangheng-1) |
Dst | Disturbance Storm Time Index |
EQ | Earthquake |
FGM | Fluxgate Magnetometer (FGM1 and FGM2 for CSES HPM) |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
HDF5 | Hierarchical Data Format version 5 |
HPM | High Precision Magnetometer |
ISGI | International Service of Geomagnetic Indices |
LAIC | Lithospheric Atmospheric Ionospheric Coupling |
LEO | Low Earth Orbit |
TEC | Total Electron Content |
USGS | United States Geological Survey |
UTC | Coordinated Universal Time |
VFM | Vector Field Magnetometer |
VLF/LF | Very Low Frequency / Low Frequency |
References
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Picozzo, P.; Dai, J. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, Y.; Zhang, Y.; Gou, X.; Cheng, B.; Wang, J.; Li, L. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 455–461. [Google Scholar] [CrossRef]
- Pollinger, A.; Lammegger, R.; Magnes, W.; Hagen, C.; Ellmeier, M.; Jernej, I.; Leichtfried, M.; Kürbisch, C.; Maierhofer, R.; Wallner, R.; et al. Coupled dark state magnetometer for the China Seismo-Electromagnetic Satellite. Meas. Sci. Technol. 2018, 29, 095103. [Google Scholar] [CrossRef] [Green Version]
- Pollinger, A.; Amtmann, C.; Betzler, A.; Cheng, B.; Ellmeier, M.; Hagen, C.; Jernej, I.; Lammegger, R.; Zhou, B.; Magnes, W. In-orbit results of the Coupled Dark State Magnetometer aboard the China Seismo-Electromagnetic Satellite. Geosci. Instrum. Methods Data Syst. 2020, 9, 275–291. [Google Scholar] [CrossRef]
- Huang, J.; Shen, X.; Zhang, X.; Lu, H.; Tan, Q.; Wang, Q.; Yan, R.; Chu, W.; Yang, Y.; Liu, D.; et al. Application system and data description of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 444–454. [Google Scholar] [CrossRef]
- Olsen, N.; Friis-Christensen, E.; Floberghagen, R.; Alken, P.; Beggan, C.D.; Chulliat, A.; Doornbos, E.; da Encarnação, J.T.; Hamilton, B.; Hulot, G.; et al. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products. Earth Planets Space 2013, 65, 1189–1200. [Google Scholar] [CrossRef]
- Yang, Y.; Hulot, G.; Vigneron, P.; Shen, X.; Zhima, Z.; Zhou, B.; Magnes, W.; Olsen, N.; Tøffner-Clausen, L.; Huang, J.; et al. The CSES global geomagnetic field model (CGGM): An IGRF-type global geomagnetic field model based on data from the China Seismo-Electromagnetic Satellite. Earth Planets Space 2021, 73, 1–21. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Boudjada, M.Y.; Liu, J.; Magnes, W.; Zhou, Y.; Du, X. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sens. 2020, 12, 4050. [Google Scholar] [CrossRef]
- Boudjada, M.Y.; Galopeau, P.H.M.; Sawas, S.; Denisenko, V.; Schwingenschuh, K.; Lammer, H.; Eichelberger, H.U.; Magnes, W.; Besser, B. Low-altitude frequency-banded equatorial emissions observed below the electron cyclotron frequency. Ann. Geophys. 2020, 38, 765–774. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre Earthquake Processes a Multidisciplinary Approach to Earthquake Prediction Studies; Geophysical Monograph 234; American Geophysical Union: Washington, DC, USA; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2018; 365p. [Google Scholar] [CrossRef]
- Simões, F.; Pfaff, R.; Berthelier, J.J.; Klenzing, J. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms. Space Sci. Rev. 2012, 168, 551–593. [Google Scholar] [CrossRef] [Green Version]
- Uyeda, S.; Hayakawa, M.; Nagao, T.; Molchanov, O.; Hattori, K.; Orihara, Y.; Gotoh, K.; Akinaga, Y.; Tanaka, H. Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc. Natl. Acad. Sci. USA 2002, 99, 7352–7355. [Google Scholar] [CrossRef] [Green Version]
- Němec, F.; Santolík, O.; Parrot, M.; Berthelier, J.J. Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikitake, T. Earthquake precursors in Japan: Precursor time and detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Jin, S.; Campuzano, S.A.; Cianchini, G.; Piscini, A. Co-Seismic Magnetic Field Perturbations Detected by Swarm Three-Satellite Constellation. Remote Sens. 2020, 12, 1166. [Google Scholar] [CrossRef] [Green Version]
- De Santis, A.; Marchetti, D.; Spogli, L.; Cianchini, G.; Pavón-Carrasco, F.J.; Franceschi, G.D.; Di Giovambattista, R.; Perrone, L.; Qamili, E.; Cesaroni, C.; et al. Magnetic Field and Electron Density Data Analysis from Swarm Satellites Searching for Ionospheric Effects by Great Earthquakes: 12 Case Studies from 2014 to 2016. Atmosphere 2019, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Schwingenschuh, K.; Prattes, G.; Besser, B.P.; Močnik, K.; Stachel, M.; Aydogar, O.; Jernej, I.; Boudjada, M.Y.; Stangl, G.; Rozhnoi, A.; et al. The Graz seismo-electromagnetic VLF facility. Nat. Hazards Earth Syst. Sci. 2011, 11, 1121–1127. [Google Scholar] [CrossRef]
- Biagi, P.F.; Colella, R.; Schiavulli, L.; Ermini, A.; Boudjada, M.; Eichelberger, H.; Schwingenschuh, K.; Katzis, K.; Contadakis, M.E.; Skeberis, C.; et al. The INFREP Network: Present Situation and Recent Results. Open J. Earthq. Res. 2019, 8, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Rozhnoi, A.; Solovieva, M.; Fedun, V.; Gallagher, P.; McCauley, J.; Boudjada, M.Y.; Shelyag, S.; Eichelberger, H.U. Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes. Ann. Geophys. 2019, 37, 843–850. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. J. Geophys. Res. (Space Phys.) 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441. [Google Scholar] [CrossRef]
- Lambin, J.; Farges, T.; Lognonné, P. Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modelling. Geophys. J. Int. Geophys. Int. 2004, 158, 1067–1077. [Google Scholar] [CrossRef]
- Hickey, M.P.; Schubert, G.; Walterscheid, R.L. Propagation of tsunami-driven gravity waves into the thermosphere and ionosphere. J. Geophys. Res. (Space Phys.) 2009, 114, A08304. [Google Scholar] [CrossRef]
- Shults, K.; Astafyeva, E.; Adourian, S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. (Space Phys.) 2016, 121, 10303–10315. [Google Scholar] [CrossRef] [Green Version]
- Heki, K. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys. Res. Lett. 2006, 33, L14303. [Google Scholar] [CrossRef] [Green Version]
- Zlotnicki, J.; Li, F.; Parrot, M. Ionospheric Disturbances Recorded by DEMETER Satellite over Active Volcanoes: From August 2004 to December 2010. Int. J. Geophys. 2013, 530865. [Google Scholar] [CrossRef] [Green Version]
- Schirninger, C.; Schwingenschuh, K.; Eichelberger, H.; Mandl, B.; Pollinger, A.; Magnes, W.; Boudjada, M.Y.; Lammegger, R.; Delva, M.; Hagen, C.; et al. Magnetic field investigations of volcanic and seismic phenomena with the China Seismo-Electromagnetic Satellite (CSES). In Proceedings of the Magnetometer Workshop 2019, Stubenberg am See, Austria, 16–20 September 2019. [Google Scholar]
- Schwingenschuh, K.; Magnes, W.; Shen, X.; Wang, J.; Cheng, B.; Pollinger, A.; Hagen, C.; Lammegger, R.; Ellmeier, M.; Schirninger, C.; et al. Satellite and ground-based magnetic field observations related to volcanic eruptions. In Proceedings of the EGU General Assembly, Online. 4–8 May 2020. [Google Scholar] [CrossRef]
- Byrne, P.K. A comparison of inner Solar System volcanism. Nat. Astron. 2020, 4, 321–327. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Jónsdóttir, K.; Hooper, A.; Holohan, E.P.; Halldórsson, S.A.; Ófeigsson, B.G.; Cesca, S.; Vogfjörd, K.S.; Sigmundsson, F.; Högnadóttir, T.; et al. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 2016, 353. [Google Scholar] [CrossRef] [Green Version]
- Kundu, B.; Senapati, B.; Matsushita, A.; Heki, K. Atmospheric wave energy of the 2020 August 4 explosion in Beirut, Lebanon, from ionospheric disturbances. Sci. Rep. 2021, 11, 2793. [Google Scholar] [CrossRef]
- Schneider, F.M.; Fuchs, F.; Kolínský, P.; Caffagni, E.; Serafin, S.; Dorninger, M.; Bokelmann, G.; AlpArray Working Group. Seismo-acoustic signals of the Baumgarten (Austria) gas explosion detected by the AlpArray seismic network. Earth Planet. Sci. Lett. 2018, 502, 104–114. [Google Scholar] [CrossRef]
- Lin, C.C.H.; Shen, M.H.; Chou, M.Y.; Chen, C.H.; Yue, J.; Chen, P.C.; Matsumura, M. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. 2017, 44, 7578–7586. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. EOS Trans. Am. Geophys. Union 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
No. | Category | Event, Object | Satellite and Instrument |
---|---|---|---|
1 | Volcano | Bárðarbunga, Iceland | Swarm A/B/C VFM |
2 | Earthquake | Severo-Kurilsk, Russia, M6.5 | CSES HPM (FGM1) and Swarm A/B/C VFM |
3 | Rio Caribe, Venezuela, M7.3 | CSES HPM (FGM1 and CDSM) | |
4 | Ndoi Island, Fiji, M8.2 | CSES HPM (FGM1 and CDSM) | |
5 | Ridgecrest, USA, M7.1 | CSES HPM (FGM1 and CDSM) | |
6 | Explosion | Baumgarten, Austria | Swarm A VFM |
7 | Tlahuelilpan, Mexico | CSES HPM (FGM1 and CDSM) | |
8 | Rocket Launch | Falcon 9, SpaceX | Swarm A/B/C VFM |
9 | Ariane 5, Arianespace, ESA | Swarm A/B/C VFM |
No. | USGS ID | Event | Date | Mag | Depth | Satellite and Instrument |
---|---|---|---|---|---|---|
1 | us1000hacw | Severo-Kurilsk, RUS | 2018-10-10 | M6.5 | 20 km | CSES FGM1, Swarm VFMs |
2 | us1000gez7 | Rio Caribe, VEN | 2018-08-21 | M7.3 | 146.8 km | CSES HPM (FGM1 and CDSM) |
3 | us1000gcii | Ndoi Island, FJI | 2018-08-19 | M8.2 | 600 km | CSES HPM (FGM1 and CDSM) |
4 | ci38457511 | Ridgecrest, USA | 2019-07-06 | M7.1 | 8 km | CSES HPM (FGM1 and CDSM) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirninger, C.; Eichelberger, H.U.; Magnes, W.; Boudjada, M.Y.; Schwingenschuh, K.; Pollinger, A.; Besser, B.P.; Biagi, P.F.; Solovieva, M.; Wang, J.; et al. Satellite Measured Ionospheric Magnetic Field Variations over Natural Hazards Sites. Remote Sens. 2021, 13, 2360. https://doi.org/10.3390/rs13122360
Schirninger C, Eichelberger HU, Magnes W, Boudjada MY, Schwingenschuh K, Pollinger A, Besser BP, Biagi PF, Solovieva M, Wang J, et al. Satellite Measured Ionospheric Magnetic Field Variations over Natural Hazards Sites. Remote Sensing. 2021; 13(12):2360. https://doi.org/10.3390/rs13122360
Chicago/Turabian StyleSchirninger, Christoph, Hans U. Eichelberger, Werner Magnes, Mohammed Y. Boudjada, Konrad Schwingenschuh, Andreas Pollinger, Bruno P. Besser, Pier F. Biagi, Maria Solovieva, Jindong Wang, and et al. 2021. "Satellite Measured Ionospheric Magnetic Field Variations over Natural Hazards Sites" Remote Sensing 13, no. 12: 2360. https://doi.org/10.3390/rs13122360
APA StyleSchirninger, C., Eichelberger, H. U., Magnes, W., Boudjada, M. Y., Schwingenschuh, K., Pollinger, A., Besser, B. P., Biagi, P. F., Solovieva, M., Wang, J., Cheng, B., Zhou, B., Shen, X., Delva, M., & Lammegger, R. (2021). Satellite Measured Ionospheric Magnetic Field Variations over Natural Hazards Sites. Remote Sensing, 13(12), 2360. https://doi.org/10.3390/rs13122360