Editorial for Special Issue “Remote Sensing for Monitoring Wildlife and Habitat in a Changing World”
1. Introduction
2. Scope of the Special Issue
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2019. [Google Scholar]
- Rocchini, D.; Balkenhol, N.; Carter, G.A.; Foody, G.M.; Gillespie, T.W.; He, K.S.; Kark, S.; Levin, N.; Lucas, K.; Luoto, M.; et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges. Ecol. Inform. 2010, 5, 318–329. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Airborne spectranomics: Mapping canopy chemical and taxonomic diversity in tropical forests. Front. Ecol. Environ. 2009, 7, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Viña, A.; Liu, W.; Zhou, S.; Huang, J.; Liu, J. Land surface phenology as an indicator of biodiversity patterns. Ecol. Indic. 2016, 64, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Cai, D.; Guan, Y.; Guo, S.; Zhang, C.; Fraedrich, K. Mapping plant functional types over broad mountainous regions: A hierarchical soft time-space classification applied to the Tibetan Plateau. Remote Sens. 2014, 6, 3511–3532. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.K.; Root, K.V. Challenges and Opportunities for Terrapene carolina carolina under Different Climate Scenarios. Remote Sens. 2020, 12, 836. [Google Scholar] [CrossRef] [Green Version]
- Richter, R.; Heim, A.; Heim, W.; Kamp, J.; Vohland, M. Combining Multiband Remote Sensing and Hierarchical Distance Sampling to Establish Drivers of Bird Abundance. Remote Sens. 2020, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Robb, B.; Huang, Q.; Sexton, J.O.; Stoner, D.; Leimgruber, P. Environmental Differences between Migratory and Resident Ungulates—Predicting Movement Strategies in Rocky Mountain Mule Deer (Odocoileus hemionus) with Remotely Sensed Plant Phenology, Snow, and Land Cover. Remote Sens. 2019, 11, 1980. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, M.M.; Godfrey, M.H.; Shaver, D.; Ceriani, S.; Gredzens, C.; Boettcher, R.; Ingram, D.; Ware, M.; Wildermann, N. Exposure of Marine Turtle Nesting Grounds to Named Storms Along the Continental USA. Remote Sens. 2019, 11, 2996. [Google Scholar] [CrossRef] [Green Version]
- Morris, K.M.; Soehren, E.C.; Woodrey, M.S.; Rush, S.A. Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA. Remote Sens. 2020, 12, 848. [Google Scholar] [CrossRef] [Green Version]
- Cove, M.V.; Fergus, C.; Lacher, I.; Akre, T.; McShea, W.J. Projecting Mammal Distributions in Response to Future Alternative Landscapes in a Rapidly Transitioning Region. Remote Sens. 2019, 11, 2482. [Google Scholar] [CrossRef] [Green Version]
- Boyden, J.; Wurm, P.; Joyce, K.E.; Boggs, G. Spatial Dynamics of Invasive Para Grass on a Monsoonal Floodplain, Kakadu National Park, Northern Australia. Remote Sens. 2019, 11, 2090. [Google Scholar] [CrossRef] [Green Version]
- Kitratporn, N.; Takeuchi, W. Spatiotemporal Distribution of Human–Elephant Conflict in Eastern Thailand: A Model-Based Assessment Using News Reports and Remotely Sensed Data. Remote Sens. 2020, 12, 90. [Google Scholar] [CrossRef] [Green Version]
- Giefer, M.; An, L. Synthesizing Remote Sensing and Biophysical Measures to Evaluate Human–wildlife Conflicts: The Case of Wild Boar Crop Raiding in Rural China. Remote Sens. 2020, 12, 618. [Google Scholar] [CrossRef] [Green Version]
- González-Rivero, M.; Beijbom, O.; Rodriguez-Ramirez, A.; Bryant, D.E.; Ganase, A.; Gonzalez-Marrero, Y.; Herrera-Reveles, A.; Kennedy, E.V.; Kim, C.J.; Lopez-Marcano, S. Monitoring of Coral Reefs Using Artificial Intelligence: A Feasible and Cost-Effective Approach. Remote Sens. 2020, 12, 489. [Google Scholar] [CrossRef] [Green Version]
- Espriella, M.C.; Lecours, V.; Frederick, P.C.; Camp, E.V.; Wilkinson, B. Quantifying Intertidal Habitat Relative Coverage in a Florida Estuary Using UAS Imagery and GEOBIA. Remote Sens. 2020, 12, 677. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viña, A. Editorial for Special Issue “Remote Sensing for Monitoring Wildlife and Habitat in a Changing World”. Remote Sens. 2021, 13, 2762. https://doi.org/10.3390/rs13142762
Viña A. Editorial for Special Issue “Remote Sensing for Monitoring Wildlife and Habitat in a Changing World”. Remote Sensing. 2021; 13(14):2762. https://doi.org/10.3390/rs13142762
Chicago/Turabian StyleViña, Andrés. 2021. "Editorial for Special Issue “Remote Sensing for Monitoring Wildlife and Habitat in a Changing World”" Remote Sensing 13, no. 14: 2762. https://doi.org/10.3390/rs13142762
APA StyleViña, A. (2021). Editorial for Special Issue “Remote Sensing for Monitoring Wildlife and Habitat in a Changing World”. Remote Sensing, 13(14), 2762. https://doi.org/10.3390/rs13142762