Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets and Pre-Processing
2.2.1. Sentinel-2 Multispectral Satellite Images (S2 MSI)
2.2.2. High-Resolution Image
2.2.3. Survey Data
3. Methodology
3.1. Analysis of PGs
3.1.1. Spectral Characteristics of PGs
3.1.2. Building Features to Highlight PGs
3.1.3. Features Participated in the Classification Process
3.2. Image Classification Methods
3.3. Assessment Methods
4. Results
4.1. PGs’ Spatial Distribution Map
4.2. Accuracy Assessment
4.2.1. Accuracy Assessment of Different Classifiers
4.2.2. Accuracy Assessment of Different Combinations
4.3. Analysis of PGs’ Distribution
5. Discussion
5.1. Importance of the Narrow Bands of S2 for PG Mapping
5.2. Discussion of the Data and Classification Methods
6. Conclusions
- The analysis of dense S2 SITS indicated that the PG’s reflectance was not changeless but continuously changed in crop growing seasons. The reflectance of the red-edge and near-infrared bands increased gradually over time and reached the maximum in late May. Hence, two critical periods’ images reflecting that an enormous reflectance difference was suitable for mapping PGs.
- When detecting PGs with two-temporal S2 images, 1D-CNN learned more detailed PG features by mining slight increases and decreases in the spectrum. Thus, the 1D-CNN classifier had a promotion compared with SVM and RF, which derived the best mapping results from all sides. The assessment indicators OA, kappa, PA, and PA increased by approximately 6%, 0.04, 3%, and 4%, respectively.
- The contrastive experiment with different temporal combinations showed that two critical period images were adequate and sufficient for PG mapping. The classified maps highly matched the real labels produced by GF-6, intuitively demonstrating the accurate results.
- In two-temporal S2 images, the variation of the narrow bands improved the PG mapping accuracy. The four indicators OA, kappa, PA, and UA of the final maps increased by 4%, 0.08, 2.96%, and 2.21%, respectively. The proposed combinations (T1 and T2) of narrow bands were also essential and unique to reflect the PGs’ spatial distribution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2011, 58, 239–258. [Google Scholar] [CrossRef]
- Bai, L.T.; Hai, J.B.; Han, Q.F.; Jia, Z.K. Effects of mulching with different kinds of plastic film on growth and water use efficiency of winter wheat in Weibei Highland. Agric. Res. Arid Areas 2010, 28, 135–139. [Google Scholar] [CrossRef]
- Jing, L.; Gengxing, Z.; Tao, L.; Yude, Y. Study on Technique of Extracting Greenhouse Vegetable Information from Landsat TM Image. J. Soil Water Conserv. 2004, 18, 126–129. [Google Scholar]
- Pala, E.; Taşdemir, K. Fast extraction of plastic greenhouses using Worldview-2 images. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; World Bank Publications: Washington, DC, USA, 1995; Volume 253. [Google Scholar]
- Levin, N.; Lugassi, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [Google Scholar] [CrossRef]
- Jiménez-Lao, R.; Aguilar, F.; Nemmaoui, A.; Aguilar, M. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sens. 2020, 12, 2649. [Google Scholar] [CrossRef]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. PLastic Films for Agricultural Applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Briassoulis, D.; Dougka, G.; Dimakogianni, D.; Vayas, I. Analysis of the collapse of a greenhouse with vaulted roof. Biosyst. Eng. 2016, 151, 495–509. [Google Scholar] [CrossRef]
- Jiao, K.; Li, D. Changes of Soil Properties and Environmental Conditions under Greenhouses. Soils 2003, 5, 94–97. [Google Scholar] [CrossRef]
- Deng, H.; Dong, J.; Zhang, J.; Wang, Q.; Jiang, L.; Luo, Q. Study on Changes of Arsenic Content and Speciation in Soil of Vegetable Greenhouse with Different Cultivating Years. J. Soil Water Conserv. 2015, 29, 271–275. [Google Scholar]
- Scarascia-Mugnozza, G.; Sica, C.; Picuno, P. The optimization of the management of agricultural plastic waste in Italy using a geographical information system. Acta Hortic. 2008, 801, 219–226. [Google Scholar] [CrossRef]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Zhao, Y. Principles and Methods of Remote Sensing Application Analysis, 11th ed.; Science Press: Beijing, China, 2003; pp. 326–340. [Google Scholar]
- Koc-San, D. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. J. Appl. Remote Sens. 2013, 7, 073553. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Jiménez-Lao, R.; Aguilar, F.J. Evaluation of Object-Based Greenhouse Mapping Using WorldView-3 VNIR and SWIR Data: A Case Study from Almería (Spain). Remote Sens. 2021, 13, 2133. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Bianconi, F.; Aguilar, F.J.; Fernández, I. Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef] [Green Version]
- Agüera, F.; Aguilar, M.A.; Aguilar, F.J. Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast. Int. J. Remote Sens. 2006, 27, 4751–4767. [Google Scholar] [CrossRef] [Green Version]
- Agüera, F.; Aguilar, F.J.; Aguilar, M.A. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogramm. Remote Sens. 2008, 63, 635–646. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, H.; Yang, L. Retrieval of Agriculture Greenhouse based on GF-2 Remote Sensing Images. Remote Sens. Technol. Appl. 2019, 34, 677–684. [Google Scholar]
- Aguilar, M.; Jiménez-Lao, R.; Nemmaoui, A.; Aguilar, F.; Koc-San, D.; Tarantino, E.; Chourak, M. Evaluation of the Consistency of Simultaneously Acquired Sentinel-2 and Landsat 8 Imagery on Plastic Covered Greenhouses. Remote Sens. 2020, 12, 2015. [Google Scholar] [CrossRef]
- Yang, D.; Chen, J.; Zhou, Y.; Chen, X.; Chen, X.; Cao, X. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS J. Photogramm. Remote Sens. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Wu, W.; Jiang, Z.; Li, H. Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Remote Sens. 2016, 8, 353. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.; Tarantino, E. Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 2015, 6, 933–941. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Vallario, A.; Aguilar, F.J.; Lorca, A.G.; Parente, C. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain. Remote Sens. 2015, 7, 7378–7401. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.A.; Nemmaoui, A.; Novelli, A.; Aguilar, F.J.; Lorca, A.G. Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series. Remote Sens. 2016, 8, 513. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z. Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sens. 2017, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L.; Fernandez-Prieto, D. Spatio-temporal Evolution of Crop Fields in Sentinel-2 Satellite Image Time Series. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Bruges, Belgium, 27–29 June 2017. [Google Scholar]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2017, 204, 509–523. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-Based Image Classification of Summer Crops with Machine Learning Methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; Brown de Colstoun, E.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based Image Analysis and Random Forest. Remote Sens. 2017, 9, 1184. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Zhao, X.; Zhang, X.; Wu, D.; Du, X. Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning. Remote Sens. 2019, 11, 1639. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Ren, C.; Wang, Z.; Wei, S.; Bai, J.; Zhang, B.; Xiang, H.; Chen, L. Mapping Tree Species Composition Using OHS-1 Hyperspectral Data and Deep Learning Algorithms in Changbai Mountains, Northeast China. Forests 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Li, G.; Li, Y. Survey of application of deep learning in image recognition. Comput. Eng. Appl. 2019, 55, 20–36. [Google Scholar] [CrossRef]
- Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [Google Scholar] [CrossRef]
- Wald, L.; Ranchin, T.; Mangolini, M. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 1997, 63, 691–699. [Google Scholar]
- Garzelli, A.; Nencini, F. PAN-sharpening of very high resolution multispectral images using genetic algorithms. Int. J. Remote Sens. 2006, 27, 3273–3292. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Feng, Z. Rational fertilization in sustainable agricultural development. China Population. Resour. Environ. 1999, 9, 80–83. [Google Scholar]
- Themistocleous, K.; Papoutsa, C.; Michaelides, S.; Hadjimitsis, D. Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 2648. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogram. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Guidici, D.; Clark, M.L. One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hypespectral Imagery in the San Francisco Bay Area, California. Remote Sens. 2017, 9, 629. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, X.; Lin, Z. Optimizing subspace SVM ensemble for hyperspectral imagery classifification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1295–1305. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Shen, Y.; Li, X.; Liu, W.; Chai, Q.; Zhang, R.; Chen, D. Object-Based Mapping of Plastic Greenhouses with Scattered Distribution in Complex Land Cover Using Landsat 8 OLI Images: A Case Study in Xuzhou, China. J. Indian Soc. Remote Sens. 2020, 48, 287–303. [Google Scholar] [CrossRef]
- Chaofan, W.; Jinsong, D.; Ke, W.; Ligang, M.; Tahmassebi, A.R.S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int. J. Agric. Biol. Eng. 2016, 9, 79–88. [Google Scholar] [CrossRef]
- Gamanya, R.; Maeyer, P.D.; Dapper, M.D. An automated satellite image classification design using object-oriented segmentation algorithms: A move towards standardization. Expert Syst. Appl. 2007, 32, 616–624. [Google Scholar] [CrossRef]
- Drăguţ, L.; Csillik, O.; Eisank, C.; Tiede, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 2014, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sens. Environ. 2020, 250, 112033. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep Pyramidal Residual Networks for Spectral–Spatial Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 740–754. [Google Scholar] [CrossRef]
Satellite | Data of Acquisition (D/M/Y) | ||
---|---|---|---|
S2(L2A) | - | 5 January 2019 | - |
- | 20 January 2019 | - | |
6 March 2017 | 6 March 2019 | 18 February 2021 | |
- | 16 March 2019 | - | |
- | 26 March 2019 | - | |
- | 5 April 2019 | - | |
- | 20 April 2019 | - | |
25 May 2017 | 20 May 2019 | 29 May 2021 | |
- | 14 June 2019 | - | |
GF-6(PMS) | - | 15 April 2019 | - |
Category | Plots | Pixels | Train Set | Test Set |
---|---|---|---|---|
PGs | 150 | 10,387 | 6232 | 4155 |
PMF | 200 | 10,074 | 6044 | 4030 |
Open farmland | 100 | 11,863 | 7118 | 4745 |
Water | 50 | 5707 | 3424 | 2283 |
Built-up | 50 | 6536 | 3922 | 2614 |
Unused land | 50 | 5950 | 3570 | 2380 |
Features (Numbers) | Description | Reference | |
---|---|---|---|
Spectrum (20) | Spectrum of two-temporal S2 imagery | ||
Indices (11) (March and May) | PI (2) | Plastic Index (PI), NIR/(NIR+R) | [46] |
PMLI (2) | Plastic-Mulched Landcover Index (PMLI) (SWIR1-R)/(SWIR1+R) | [28] | |
RPGI (2) | Retrogressive Plastic Greenhouses Index Blue/(1-Mean (Blue+Green+NIR)) | [22] | |
T1 (1) | Formula 1 | ||
NDVI (2) | (NIR- Red)/(NIR + Red) | [30] | |
T2 (2) | Formula 2 |
Features | Verification Set | Arithmetic Mean | OA | Kappa | PA | UA |
---|---|---|---|---|---|---|
Single data | Sample (a) | - | 87.29 | 0.67 | 72.63 | 79.82 |
Sample (b) | - | 87.42 | 0.74 | 81.39 | 88.48 | |
Sample (c) | - | 81.14 | 0.65 | 73.70 | 92.51 | |
Sample (d) | - | 91.93 | 0.68 | 70.46 | 82.00 | |
- | - | Average | 86.95 | 0.69 | 74.55 | 85.70 |
Two-temporal Combination | Sample (a) | - | 91.73 | 0.82 | 86.53 | 89.26 |
Sample (b) | - | 89.94 | 0.80 | 95.60 | 83.12 | |
Sample (c) | - | 90.26 | 0.81 | 87.40 | 91.98 | |
Sample (d) | - | 92.43 | 0.79 | 86.86 | 82.50 | |
- | - | Average | 91.09 | 0.81 | 89.01 | 86.72 |
Multi-temporal Combination | Sample (a) | - | 92.75 | 0.81 | 86.93 | 90.05 |
Sample (b) | - | 90.60 | 0.81 | 95.58 | 84.36 | |
Sample (c) | - | 88.88 | 0.78 | 82.16 | 92.54 | |
Sample (d) | - | 93.27 | 0.79 | 83.84 | 80.56 | |
- | - | Average | 91.38 | 0.80 | 87.13 | 86.88 |
Indicators | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Mean |
---|---|---|---|---|---|
OA | 3.2 | 4.87 | 3.45 | 0.46 | 4 |
Kappa | 0.09 | 0.09 | 0.08 | 0.08 | 0.08 |
PA | −1.63 | 8.13 | 2.37 | 2.96 | 2.96 |
UA | 2.21 | 3.01 | 3.13 | 0.48 | 2.21 |
Application | Imagery | Spatial Resolution (m) | References | Advantages |
---|---|---|---|---|
PG mapping | VHR | >=2 | Koc-San [15] Agueera [16] Aguilar [17,26] Agüera [18,19] Manuel [26] | Accurate |
VHR and Multi-spectral | 30 (L8) 10(S2) | Aguilar [26] Novelli [31] | Improved, Accurate | |
Multi-spectral (L8) | 30 | Yang [22] Jing [3], Ji [50], Wu [51] | Quantitative, Large-scale | |
Large-scale | ||||
VHR and Multi-temporal (L8) | - | Aguilar [26] | Improved, Accurate | |
PMF mapping | Multi-temporal | 30 (L8) | Hasituya [27] | Advanced |
30 (L5) | Lu [28] | Quantitative, Large-scale | ||
Horticultural Crop mapping | Multi-temporal | 30 (L8) | Aguilar [25] Novelli [24] | Advanced, Unique |
PG mapping | Two-temporal S2 | 10 | Our research | Relative Accurate, Large-scale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wang, L.; Lin, R.; Zhang, Z.; Zhang, B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sens. 2021, 13, 2820. https://doi.org/10.3390/rs13142820
Sun H, Wang L, Lin R, Zhang Z, Zhang B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sensing. 2021; 13(14):2820. https://doi.org/10.3390/rs13142820
Chicago/Turabian StyleSun, Haoran, Lei Wang, Rencai Lin, Zhen Zhang, and Baozhong Zhang. 2021. "Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning" Remote Sensing 13, no. 14: 2820. https://doi.org/10.3390/rs13142820
APA StyleSun, H., Wang, L., Lin, R., Zhang, Z., & Zhang, B. (2021). Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sensing, 13(14), 2820. https://doi.org/10.3390/rs13142820