Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Polar-Orbiting VIIRS-IM Fire Radiative Power
2.3. Geostationary Himawari-8 Fire Radiative Power
2.4. Land Cover Data
2.5. FINN and GFAS Emissions Inventory Data
3. Methodology
3.1. Fire Diurnal Cycle and Daily FRE Generation
3.2. Conversion to Smoke Emissions
4. Results and Discussions
4.1. Differences in Fire Monitoring
4.2. The Fire Diurnal Cycle Characteristic
4.3. DMB Comparisons to the FINN and GFAS
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levine, J.S.; Cofer, W.R.; Cahoon, D.R.; Winstead, E.L. A DRIVER FOR GLOBAL CHANGE. Environ. Sci. Technol. 1995, 29, 120A–125A. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Cheng, L.; McDonald, K.M.; Angle, R.P.; Sandhu, H.S. Forest Fire Enhanced Photochemical Air Pollution. A Case Study. Atmos. Environ. 1998, 32, 673–681. [Google Scholar] [CrossRef]
- Dennis, A.; Fraser, M.; Anderson, S.; Allen, D. Air Pollutant Emissions Associated with Forest, Grassland, and Agricultural Burning in Texas. Atmos. Environ. 2002, 36, 3779–3792. [Google Scholar] [CrossRef]
- Reisen, F.; Meyer, C.P.M.; Keywood, M.D. Impact of Biomass Burning Sources on Seasonal Aerosol Air Quality. Atmos. Environ. 2013, 67, 437–447. [Google Scholar] [CrossRef]
- Johnston, F.H.; Borchers-Arriagada, N.; Morgan, G.G.; Jalaludin, B.; Palmer, A.J.; Williamson, G.J.; Bowman, D.M.J.S. Unprecedented Health Costs of Smoke-Related PM2.5 from the 2019–20 Australian Megafires. Nat. Sustain. 2021, 4, 42–47. [Google Scholar] [CrossRef]
- Crutzen, P.J.; Andreae, M.O. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. In Paul J. Crutzen: A Pioneer on Atmospheric Chemistry and Climate Change in the Anthropocene; Crutzen, P.J., Brauch, H.G., Eds.; SpringerBriefs on Pioneers in Science and Practice; Springer International Publishing: Cham, Switzerland, 2016; Volume 50, pp. 165–188. ISBN 978-3-319-27459-1. [Google Scholar]
- Huang, X.; Li, M.; Li, J.; Song, Y. A High-Resolution Emission Inventory of Crop Burning in Fields in China Based on MODIS Thermal Anomalies/Fire Products. Atmos. Environ. 2012, 50, 9–15. [Google Scholar] [CrossRef]
- Europe, W.H.O.R.O. for Air Quality Guidelines: Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Indian J. Med. Res. 2007, 4, 492–493. [Google Scholar]
- French, N.H.F. Uncertainty in Estimating Carbon Emissions from Boreal Forest Fires. J. Geophys. Res. 2004, 109, D14S08. [Google Scholar] [CrossRef]
- Kasischke, E.S. Improving Global Estimates of Atmospheric Emissions from Biomass Burning. J. Geophys. Res. 2004, 109, D14S01. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.M. On Uncertainty in the Computation of Global Emissions from Biomass Burning. Clim. Chang. 1989, 14, 243–261. [Google Scholar] [CrossRef]
- Schultz, M.G.; Heil, A.; Hoelzemann, J.J.; Spessa, A.; Thonicke, K.; Goldammer, J.G.; Held, A.C.; Pereira, J.M.C.; van het Bolscher, M. Global Wildland Fire Emissions from 1960 to 2000: GLOBAL FIRE EMISSIONS 1960-2000. Glob. Biogeochem. Cycles 2008, 22, 1–17. [Google Scholar] [CrossRef]
- Van Der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Giglio, L. Carbon Emissions from Fires in Tropical and Subtropical Ecosystems: CARBON EMISSIONS FROM TROPICAL FIRES. Glob. Chang. Biol. 2003, 9, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.; Song, Y. Estimates of Biomass Burning Emissions in Tropical Asia Based on Satellite-Derived Data. Atmos. Chem. Phys. 2010, 10, 2335–2351. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Chang, D.; Liu, B.; Miao, W.; Zhu, L.; Zhang, Y. A New Emission Inventory for Nonagricultural Open Fires in Asia from 2000 to 2009. Environ. Res. Lett. 2010, 5, 014014. [Google Scholar] [CrossRef]
- Seiler, W.; Crutzen, P.J. Estimates of Gross and Net Fluxes of Carbon between the Biosphere and the Atmosphere from Biomass Burning. Clim. Chang. 1980, 2, 207–247. [Google Scholar] [CrossRef]
- Ito, A. Global Estimates of Biomass Burning Emissions Based on Satellite Imagery for the Year 2000. J. Geophys. Res. 2004, 109, D14S05. [Google Scholar] [CrossRef]
- Hoelzemann, J.J. Global Wildland Fire Emission Model (GWEM): Evaluating the Use of Global Area Burnt Satellite Data. J. Geophys. Res. 2004, 109, D14S04. [Google Scholar] [CrossRef]
- Korontzi, S.; Roy, D.P.; Justice, C.O.; Ward, D.E. Modeling and Sensitivity Analysis of Fire Emissions in Southern Africa during SAFARI 2000. Remote Sens. Environ. 2004, 92, 376–396. [Google Scholar] [CrossRef]
- Boschetti, L.; Eva, H.D.; Brivio, P.A.; Grégoire, J.M. Lessons to Be Learned from the Comparison of Three Satellite-Derived Biomass Burning Products: COMPARISON OF BIOMASS BURNING DATASETS. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of Biomass Combustion Rates and Totals from Fire Radiative Power Observations: FRP Derivation and Calibration Relationships between Biomass Consumption and Fire Radiative Energy Release. J. Geophys. Res. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Roberts, G.; Freeborn, P. New GOES Imager Algorithms for Cloud and Active Fire Detection and Fire Radiative Power Assessment across North, South and Central America. Remote Sens. Environ. 2010, 114, 1876–1895. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass Burning Emissions Estimated with a Global Fire Assimilation System Based on Observed Fire Radiative Power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Kondragunta, S.; Ram, J.; Schmidt, C.; Huang, H.-C. Near-Real-Time Global Biomass Burning Emissions Product from Geostationary Satellite Constellation: Global Biomass Burning Emissions. J. Geophys. Res. 2012, 117, 1–22. [Google Scholar] [CrossRef]
- Vermote, E.; Ellicott, E.; Dubovik, O.; Lapyonok, T.; Chin, M.; Giglio, L.; Roberts, G.J. An Approach to Estimate Global Biomass Burning Emissions of Organic and Black Carbon from MODIS Fire Radiative Power. J. Geophys. Res. 2009, 114, D18205. [Google Scholar] [CrossRef]
- Liu, M.; Song, Y.; Yao, H.; Kang, Y.; Li, M.; Huang, X.; Hu, M. Estimating Emissions from Agricultural Fires in the North China Plain Based on MODIS Fire Radiative Power. Atmos. Environ. 2015, 112, 326–334. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Ellicott, E.; Badarinath, K.V.S.; Vermote, E. MODIS Derived Fire Characteristics and Aerosol Optical Depth Variations during the Agricultural Residue Burning Season, North India. Environ. Pollut. 2011, 159, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global Characterization of Biomass-Burning Patterns Using Satellite Measurements of Fire Radiative Energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a Global Algorithm for Systematic Fire-Affected Area Mapping Using MODIS Time Series Data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Van, D.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Kasibhatla, P.S.; Arellano, A.F. Interannual Variability in Global Biomass Burning Emissions from 1997 to 2004. Atmos. Chem. Phys. 2006, 6, 3423–3441. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors: Global Fire Distribution and Seasonality. J. Geophys. Res. 2006, 111, 1–12. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Prins, E.M.; Menzel, W.P. Geostationary Satellite Detection of Bio Mass Burning in South America. Int. J. Remote Sens. 1992, 13, 2783–2799. [Google Scholar] [CrossRef]
- Giglio, L. Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations. Remote Sens. Environ. 2007, 108, 407–421. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Lagoudakis, E. Annual and Diurnal African Biomass Burning Temporal Dynamics. Biogeosciences 2009, 6, 849–866. [Google Scholar] [CrossRef] [Green Version]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and Consequences of Eastern Australia’s 2019–20 Season of Mega-fires. Glob. Chang. Biol 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, X.; Chen, X.; Gao, Y.; Mi, J. GLC_FCS30-2020:Global Land Cover with Fine Classification System at 30m in 2020. Zenodo 2020. [Google Scholar] [CrossRef]
- Zhou, L.; Divakarla, M.; Liu, X.; Layns, A.; Goldberg, M. An Overview of the Science Performances and Calibration/Validation of Joint Polar Satellite System Operational Products. Remote Sens. 2019, 11, 698. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS Day-Night Band on-Orbit Performance: VIIRS DAY-NIGHT BAND PERFORMANCE. J. Geophys. Res. Atmos. 2013, 118, 12,705–12,718. [Google Scholar] [CrossRef]
- Goldberg, M.D.; Kilcoyne, H.; Cikanek, H.; Mehta, A. Joint Polar Satellite System: The United States next Generation Civilian Polar-Orbiting Environmental Satellite System: USA Next Generation Satellite System. J. Geophys. Res. Atmos. 2013, 118, 13463–13475. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Kondragunta, S.; Csiszar, I. Comparison of Fire Radiative Power Estimates From VIIRS and MODIS Observations. J. Geophys. Res. Atmos. 2018, 123, 4545–4563. [Google Scholar] [CrossRef]
- Wolfe, R.E.; Lin, G.; Nishihama, M.; Tewari, K.P.; Tilton, J.C.; Isaacman, A.R. Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization. J. Geophys. Res. Atmos. 2013, 118, 11508–11521. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS Sensor Data Record Verification, Validation, and Long-Term Performance Monitoring: VIIRS SDR CAL/VAL and Performance. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Ellicott, E.; Vermote, E.; Giglio, L.; Roberts, G. Estimating Biomass Consumed from Fire Using MODIS FRE. Geophys. Res. Lett. 2009, 36, L13401. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; Collatz, G.J.; Mu, M.; Kasibhatla, P.S.; Morton, D.C.; DeFries, R.S.; Jin, Y.; van Leeuwen, T.T. Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997–2009). Atmos. Chem. Phys. 2010, 10, 11707–11735. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyer, C.; Akagi, S.K.; Yokelson, R.J.; Emmons, L.K.; Al-Saadi, J.A.; Orlando, J.J.; Soja, A.J. The Fire INventory from NCAR (FINN): A High Resolution Global Model to Estimate the Emissions from Open Burning. Geosci. Model. Dev. 2011, 4, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyer, C.; Quayle, B.; Geron, C.; Belote, A.; McKenzie, D.; Zhang, X.; O’Neill, S.; Wynne, K.K. Estimating Emissions from Fires in North America for Air Quality Modeling. Atmos. Environ. 2006, 40, 3419–3432. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Andela, N.; Kaiser, J.; Heil, A.; van Leeuwen, T.T.; Wooster, M.J.; van der Werf, G.R.; Remy, S.; Schultz, M.G. Assessment of the Global Fire Assimilation System (GFASv1); Copernicus Publications: Göttingen, Germany, 2013; pp. 1–75. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, C.; Chan, K.L.; Hu, C.; Yao, L. Estimation of Field-Level NOx Emissions from Crop Residue Burning Using Remote Sensing Data: A Case Study in Hubei, China. Remote Sens. 2021, 13, 404. [Google Scholar] [CrossRef]
- Wickramasinghe, C.; Wallace, L.; Reinke, K.; Jones, S. Intercomparison of Himawari-8 AHI-FSA with MODIS and VIIRS Active Fire Products. Int. J. Digit. Earth 2020, 13, 457–473. [Google Scholar] [CrossRef]
- Andela, N.; Kaiser, J.W.; van der Werf, G.R.; Wooster, M.J. New Fire Diurnal Cycle Characterizations to Improve Fire Radiative Energy Assessments Made from MODIS Observations. Atmos. Chem. Phys. 2015, 15, 8831–8846. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M. Fire Radiative Energy for Quantitative Study of Biomass Burning: Derivation from the BIRD Experimental Satellite and Comparison to MODIS Fire Products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Hély, C.; Alleaume, S.; Swap, R.J.; Shugart &, H.H.; Justice, C.O. SAFARI-2000 Characterization of Fuels, Fire Behavior, Combustion Completeness, and Emissions from Experimental Burns in Infertile Grass Savannas in Western Zambia. J. Arid Environ. 2003, 54, 381–394. [Google Scholar] [CrossRef]
- Zhang, T.; de Jong, M.C.; Wooster, M.J.; Xu, W.; Wang, L. Trends in Eastern China Agricultural Fire Emissions Derived from a Combination of Geostationary (Himawari) and Polar (VIIRS) Orbiter Fire Radiative Power Products. Atmos. Chem. Phys. 2020, 20, 10687–10705. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
MODIS | VIIRS (Suomi NPP) | |
---|---|---|
Orbit altitude | ~705 km | ~804 km |
Equator crossing time | 1:30 AM, PM;10:30 AM, PM (local time) | 1:30 AM, PM (local time) |
Scan angle range | ±55° | ±56.28° |
Swath width | 2340 km | 3000 km |
Pixel dimensions | 1 km(nadir)–2.01 km (along track), 1 km(nadir)–4.83 km (along scan) | I-band:375 m(nadir)–800 m (along track), 375 m(nadir)–800 m (along scan) M-band:750 m(nadir)–1.60 km(along track), 750 m(nadir)–1.60 km (along scan) |
Primary bands for fire detection and FRP retrieval | B21 (3.929–3.989 μm) B22 (3.940–4.001 μm) B31 (10.780–11.280 μm | I4 (3.550–3.930 μm) M13 (3.987–4.145 μm) M15 (10.234–11.248 μm) |
Land Cover Class | CO2 | CO | PM2.5 | BC (Black Carbon) |
---|---|---|---|---|
Temperate forest | 1572 | 106 | 13.8 | 0.56 |
Shrubland | 1646 | 61 | 4.9 | 0.46 |
Agriculture | 1308 | 92 | 8.3 | 0.42 |
7 November 2019–13 November 2019 | 3 December 2019–7 December 2019 | 16 December 2019–21 December 2019 | 30 December 2019–4 January 2020 | 7 November 2019–4 January 2020 | |
---|---|---|---|---|---|
This study | 24.82 | 23.27 | 18.13 | 37.97 | 146.83 |
GFAS | 16.4 | 12.49 | 12.75 | 44.04 | 129.07 |
FINN | 28.02 | 26.19 | 24.94 | 55.08 | 204.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Liu, J.; Jian, H.; Fan, X.; Yan, F. Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia. Remote Sens. 2021, 13, 2852. https://doi.org/10.3390/rs13152852
Zheng Y, Liu J, Jian H, Fan X, Yan F. Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia. Remote Sensing. 2021; 13(15):2852. https://doi.org/10.3390/rs13152852
Chicago/Turabian StyleZheng, Yueming, Jian Liu, Hongdeng Jian, Xiangtao Fan, and Fuli Yan. 2021. "Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia" Remote Sensing 13, no. 15: 2852. https://doi.org/10.3390/rs13152852
APA StyleZheng, Y., Liu, J., Jian, H., Fan, X., & Yan, F. (2021). Fire Diurnal Cycle Derived from a Combination of the Himawari-8 and VIIRS Satellites to Improve Fire Emission Assessments in Southeast Australia. Remote Sensing, 13(15), 2852. https://doi.org/10.3390/rs13152852