Driving Factors of Land Surface Temperature in Urban Agglomerations: A Case Study in the Pearl River Delta, China
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Spatial Variability of LST
3.1.1. Global Moran’s Index
3.1.2. Hotspot Analysis
3.2. Hotspot Ratio Index
3.3. Geo-Detector Metric
3.3.1. Factor Detector
3.3.2. Interaction Detector
3.3.3. Data Preparation
4. Results
4.1. Spatial Distribution of LST
4.1.1. General Spatial Pattern of LST
4.1.2. Spatial Distribution of Hotspot Areas (HSAs)
4.2. Hotspot Ratio Index in the Nine Cities
4.3. Dominant Drivers of LST in the PRD
4.4. Dominant Drivers of LST in the Nine Cities
4.4.1. Factor Detector Analysis
4.4.2. Interaction Detector Analysis
5. Discussion
5.1. Spatial Patterns and Drivers of LST
5.2. Management of Urban Agglomerations
5.3. Limitations and Future Work
6. Conclusions
- From 2005 to 2015, the daytime HSAs were concentrated towards the center of the PRD, while they decreased in the northern PRD. The stable daytime HSAs were concentrated and distributed on both sides of the Pearl River estuary.
- The rankings of the HRI values of the nine cities showed that, during the study period, the highest daytime stress on the thermal environment among all cities was recorded in Dongguan and Shenzhen. The nighttime stress on the thermal environment recorded in Zhongshan, Zhuhai, Dongguan, and Shenzhen was higher than that in the other cities in 2015, while the lowest HRI values were observed in Zhaoqing, Jiangmen, and Huizhou, which were characterized by the lowest urbanization rates. This finding indicates that highly urbanized cities are more likely to experience severe thermal environments than cities with low urbanization rates.
- The influence of land cover and socio-economic factors on daytime LST was higher in the relatively highly urbanized cities than in the cities with low urbanization rates. This finding indicates that human activities greatly contributed to the variations in LST in highly urbanized areas.
- In 2015, the NLI factor exhibited the strongest influence on daytime LST in Shenzhen, Dongguan, Guangzhou, Foshan, Zhongshan, and Zhuhai. However, for the marginal cities of Zhaoqing, Jiangmen, and Huizhou, the influence of elevation was much higher than that of the other factors. This finding indicates that the influence of socio-economic activities on daytime LST was higher in highly urbanized areas, and even exceeded the influence of land cover. Controlling the anthropogenic heat released due to socio-economic activities is an important step in improving the thermal environment in highly urbanized areas with the development of urban agglomerations.
- The NDVI showed an important influence on nighttime LST in most of the cities during the study period. Some factors had no significant effects on nighttime LST in some cities, suggesting that the driving mechanisms of nighttime LST are more complex than those of daytime LST.
- LST is the result of the combined effects of multiple factors. The combined effects of different factors on the LST are greater than the independent effects of single factors. The combined effects of different drivers are important in studies of the driving mechanisms of LST.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GD | Geo-detector |
GDP | Gross domestic product |
HRI | Hotspot ratio index |
HSAs | Hotspot areas |
ISDD | Impervious surface distribution density |
LST | Land surface temperature |
LUCC | Land use/land cover |
NDVI | Normalized difference vegetation index |
NLI | Nighttime light index |
POP | Population density |
PRD | Pearl River Delta |
UHI | Urban heat island |
References
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Tao, M.; Chen, L.; Wang, Z.; Wang, J.; Tao, J.; Wang, X. Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Environ. Res. Lett. 2016, 11, 054019. [Google Scholar] [CrossRef]
- Curriero, F.C.; Heiner, K.S.; Samet, J.M.; Zeger, S.L.; Strug, L.; Patz, J.A. Temperature and mortality in 11 cities of the eastern United States. Am. J. Epidemiol. 2002, 155, 80–87. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Hwang, R.-L.; Lin, T.-P.; Lin, F.-Y. Evaluation and mapping of building overheating risk and air conditioning use due to the urban heat island effect. J. Build. Eng. 2020, 32, 101726. [Google Scholar] [CrossRef]
- Fang, C. Important progress and future direction of studies on China’s urban agglomerations. J. Geogr. Sci. 2015, 25, 1003–1024. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 2017, 162, 126–136. [Google Scholar] [CrossRef]
- Li, W.; Han, C.; Li, W.; Zhou, W.; Han, L. Multi-scale effects of urban agglomeration on thermal environment: A case of the Yangtze River Delta Megaregion, China. Sci. Total Environ. 2020, 713, 136556. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Meng, Q.; Zhang, L.; Zhang, Y. Spatial quantitative analysis of the potential driving factors of land surface temperature in different “Centers” of polycentric cities: A case study in Tianjin, China. Sci. Total Environ. 2020, 706, 135244. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Wang, L.; Huang, X.; Niu, Z.; Liu, F.; Wang, Q. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Sci. Total Environ. 2017, 609, 742–754. [Google Scholar] [CrossRef]
- Kedia, S.; Bhakare, S.P.; Dwivedi, A.K.; Islam, S.; Kaginalkar, A. Estimates of change in surface meteorology and urban heat island over northwest India: Impact of urbanization. Urban Clim. 2021, 36, 100782. [Google Scholar] [CrossRef]
- Sultana, S.; Satyanarayana, A. Assessment of urbanisation and urban heat island intensities using landsat imageries during 2000–2018 over a sub-tropical Indian City. Sustain. Cities Soc. 2020, 52, 101846. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Hereher, M.; Robaa, S.M.; McCabe, M.F.; Lopez-Moreno, J.I.; Domínguez-Castro, F.; Gaber, I.M.; Al-Awadhi, T.; Al-Buloshi, A.; Al Nasiri, N. Nocturnal Surface Urban Heat Island over Greater Cairo: Spatial Morphology, Temporal Trends and Links to Land-Atmosphere Influences. Remote Sens. 2020, 12, 3889. [Google Scholar] [CrossRef]
- Mohammad, P.; Goswami, A.; Bonafoni, S. The impact of the land cover dynamics on surface urban heat island variations in semi-arid cities: A case study in Ahmedabad City, India, using multi-sensor/source data. Sensors 2019, 19, 3701. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tian, G.; Feng, J.; Ma, B.; Wang, J.; Kong, L. Modeling the warming impact of urban land expansion on hot weather using the weather research and forecasting model: A case study of Beijing, China. Adv. Atmos. Sci. 2018, 35, 723–736. [Google Scholar] [CrossRef]
- Guo, G.; Wu, Z.; Chen, Y. Complex mechanisms linking land surface temperature to greenspace spatial patterns: Evidence from four southeastern Chinese cities. Sci. Total Environ. 2019, 674, 77–87. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef]
- Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Yao, L.; Li, T.; Xu, M.; Xu, Y. How the landscape features of urban green space impact seasonal land surface temperatures at a city-block-scale: An urban heat island study in Beijing, China. Urban For. Urban Green. 2020, 52, 126704. [Google Scholar] [CrossRef]
- Dwivedi, A.; Mohan, B.K. Impact of green roof on micro climate to reduce Urban Heat Island. Remote Sens. Appl. Soc. Environ. 2018, 10, 56–69. [Google Scholar] [CrossRef]
- Singh, P.; Kikon, N.; Verma, P. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain. Cities Soc. 2017, 32, 100–114. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.-M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustain. Cities Soc. 2020, 63, 102425. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Portela, C.I.; Massi, K.G.; Rodrigues, T.; Alcântara, E. Impact of urban and industrial features on land surface temperature: Evidences from satellite thermal indices. Sustain. Cities Soc. 2020, 56, 102100. [Google Scholar] [CrossRef]
- Lo, C. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Chand, T.K.; Badarinath, K.; Elvidge, C.; Tuttle, B. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Yu, B.; Tang, M.; Wu, Q.; Yang, C.; Deng, S.; Shi, K.; Peng, C.; Wu, J.; Chen, Z. Urban built-up area extraction from log-transformed NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1279–1283. [Google Scholar] [CrossRef]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Yang, K.; Li, M. Influence of spatiotemporal pattern changes of impervious surface of urban megaregion on thermal environment: A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China. Ecol. Indic. 2021, 121, 107106. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation, urbanization and elevation parameters. Sustain. Cities Soc. 2017, 35, 157–177. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628, 415–429. [Google Scholar] [CrossRef]
- Cui, C.; Wang, B.; Ren, H.; Wang, Z. Spatiotemporal variations in gastric cancer mortality and their relations to influencing factors in S County, China. Int. J. Environ. Res. Public Health 2019, 16, 784. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Qian, X.; Li, C.; Chen, S.; Wang, W. Using the geographical detector technique to explore the impact of socioeconomic factors on PM2. 5 concentrations in China. J. Clean. Prod. 2019, 211, 1480–1490. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Wang, S. Examining the effects of socioeconomic development on fine particulate matter (PM2. 5) in China’s cities using spatial regression and the geographical detector technique. Sci. Total Environ. 2018, 619, 436–445. [Google Scholar] [CrossRef]
- Zhao, R.; Zhan, L.; Yao, M.; Yang, L. A geographically weighted regression model augmented by Geodetector analysis and principal component analysis for the spatial distribution of PM2. 5. Sustain. Cities Soc. 2020, 56, 102106. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, Y.; He, L.; Wang, J.; Liu, X.; Zhang, N.; Xu, B. Temporal and spatial analysis of neural tube defects and detection of geographical factors in Shanxi Province, China. PLoS ONE 2016, 11, e0150332. [Google Scholar]
- Huang, J.; Wang, J.; Bo, Y.; Xu, C.; Hu, M.; Huang, D. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Deng, L.; Zuo, S.; Luo, Y.; Shao, G.; Wei, X.; Hua, L.; Yang, Y. Geographical modeling of spatial interaction between human activity and forest connectivity in an urban landscape of southeast China. Landsc. Ecol. 2014, 29, 1741–1758. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector–a case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Ding, Y.; Cai, J.; Ren, Z.; Yang, Z. Spatial disparities of economic growth rate of China’s National-level ETDZs and their determinants based on geographical detector analysis. Prog. Geogr. 2014, 33, 657–666. [Google Scholar]
- Wang, Y.; Wang, S.; Li, G.; Zhang, H.; Jin, L.; Su, Y.; Wu, K. Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique. Appl. Geogr. 2017, 79, 26–36. [Google Scholar] [CrossRef]
- Ren, Y.; Deng, L.-Y.; Zuo, S.-D.; Song, X.-D.; Liao, Y.-L.; Xu, C.-D.; Chen, Q.; Hua, L.-Z.; Li, Z.-W. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Bank, W. East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Zhang, L.; Weng, Q. Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 86–96. [Google Scholar] [CrossRef]
- Liu, B.; Peng, S.; Liao, Y.; Long, W. The causes and impacts of water resources crises in the Pearl River Delta. J. Clean. Prod. 2018, 177, 413–425. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Yang, L.E.; Scheffran, J.; Mitchell, G.; Adekola, O.; Griffiths, J.; Chen, Y.; Li, G.; Lu, X.; Qi, Y. Urban flood risks and emerging challenges in a Chinese delta: The case of the Pearl River Delta. Environ. Sci. Policy 2021, 122, 101–115. [Google Scholar] [CrossRef]
- Hou, H.; Liu, K.; Li, X.; Chen, S.; Wang, W.; Rong, K. Assessing the urban heat island variations and its influencing mechanism in metropolitan areas of Pearl River Delta, South China. Phys. Chem. Earth Parts A/B/C 2020, 120, 102953. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Zhang, L.; Huang, M.; Zhong, L.; Chen, D.; Wang, X. Trends of outdoor air pollution and the impact on premature mortality in the Pearl River Delta region of southern China during 2006–2015. Sci. Total Environ. 2019, 690, 248–260. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Y.; Xia, B.; Huang, G. Surface temperature variations and their relationships with land cover in the Pearl River Delta. Environ. Sci. Pollut. Res. 2020, 27, 37614–37625. [Google Scholar] [CrossRef]
- Nichol, J.E.; Choi, S.Y.; Wong, M.S.; Abbas, S. Temperature change and urbanisation in a multi-nucleated megacity: China’s Pearl River Delta. Urban Clim. 2020, 31, 100592. [Google Scholar] [CrossRef]
- Wang, R.; Cai, M.; Ren, C.; Bechtel, B.; Xu, Y.; Ng, E. Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Clim. 2019, 28, 100455. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Yu, H.; Zhu, X.; Shen, Z. Variable Urbanization Warming Effects across Metropolitans of China and Relevant Driving Factors. Remote Sens. 2020, 12, 1500. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S. Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 65–71. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Liu, L.; Chen, Y.; Zou, Y. Assessing the relationship between anthropogenic heat release warming and building characteristics in Guangzhou: A sustainable development perspective. Sci. Total Environ. 2019, 695, 133759. [Google Scholar] [CrossRef]
- Wang, W.; Liu, K.; Tang, R.; Wang, S. Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Phys. Chem. Earth Parts A/B/C 2019, 110, 168–175. [Google Scholar] [CrossRef]
- Li, W.; Cao, Q.; Lang, K.; Wu, J. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature. Sci. Total Environ. 2017, 586, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Myint, S.W.; Zhao, Q.; Wentz, E.A. Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landsc. Urban Plan. 2019, 192, 103668. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- Quan, J.; Chen, Y.; Zhan, W.; Wang, J.; Voogt, J.; Wang, M. Multi-temporal trajectory of the urban heat island centroid in Beijing, China based on a Gaussian volume model. Remote Sens. Environ. 2014, 149, 33–46. [Google Scholar] [CrossRef]
- Streutker, D.R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sens. Environ. 2003, 85, 282–289. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. The footprint of urban heat island effect in 302 Chinese cities: Temporal trends and associated factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Hu, Y.; Dong, J.; Liu, Q.; Liu, Y. Quantifying spatial morphology and connectivity of urban heat islands in a megacity: A radius approach. Sci. Total Environ. 2020, 714, 136792. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Wu, C.; Zhao, D.; Xu, X.; Yang, J.; Feng, L.; Sun, Z.; Liu, L. Determining the boundary and probability of surface urban heat island footprint based on a logistic model. Remote Sens. 2019, 11, 1368. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Jenerette, G.D.; Pauliet, S. Locally optimized separability enhancement indices for urban land cover mapping: Exploring thermal environmental consequences of rapid urbanization in Addis Ababa, Ethiopia. Remote Sens. Environ. 2016, 175, 14–31. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Songchitruksa, P.; Zeng, X. Getis–Ord spatial statistics to identify hot spots by using incident management data. Transp. Res. Rec. 2010, 2165, 42–51. [Google Scholar] [CrossRef]
- Shirani-Bidabadi, N.; Nasrabadi, T.; Faryadi, S.; Larijani, A.; Roodposhti, M.S. Evaluating the spatial distribution and the intensity of urban heat island using remote sensing, case study of Isfahan city in Iran. Sustain. Cities Soc. 2019, 45, 686–692. [Google Scholar] [CrossRef]
- Xu, H.-Q.; Chen, B.-Q. Remote sensing of the urban heat island and its changes in Xiamen City of SE China. J. Environ. Sci. 2004, 16, 276–281. [Google Scholar]
- Qiao, Z.; Tian, G.; Zhang, L.; Xu, X. Influences of urban expansion on urban heat island in Beijing during 1989–2010. Adv. Meteorol. 2014, 2014, 187169. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Ge, Y.; Wang, J.-F. Optimal discretization for geographical detectors-based risk assessment. GISci. Remote Sens. 2013, 50, 78–92. [Google Scholar] [CrossRef]
- De Smith, M.J.; Goodchild, M.F.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; Troubador Publishing Ltd: Kibworth Harcourt, UK, 2007. [Google Scholar]
- Chen, W.; Zhang, Y.; Pengwang, C.; Gao, W. Evaluation of urbanization dynamics and its impacts on surface heat islands: A case study of Beijing, China. Remote Sens. 2017, 9, 453. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, E.; Zhang, H. Examining the coupling relationship between urbanization and natural disasters: A case study of the Pearl River Delta, China. Int. J. Disaster Risk Reduct. 2021, 55, 102057. [Google Scholar] [CrossRef]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.o.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [Green Version]
- Logan, T.; Zaitchik, B.; Guikema, S.; Nisbet, A. Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Khandelwal, S.; Goyal, R.; Kaul, N.; Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt. J. Remote Sens. Space Sci. 2018, 21, 87–94. [Google Scholar] [CrossRef]
- Goyal, R.; Khandelwal, S.; Kaul, N. Analysis of relative importance of parameters representing vegetation, urbanization and elevation with land surface temperature using ANN. In Proceedings of the Geospatial World Forum Hyderabad, Hyderabad, India, 18–21 January 2011. [Google Scholar]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- McCarthy, M.P.; Best, M.J.; Betts, R.A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. 2010, 37, L09705. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, B.R.; Sajjad, H.; Elvidge, C.D.; Ting, Y.; Pandey, P.C.; Rani, M.; Kumar, P. Modeling of electric demand for sustainable energy and management in India using spatio-temporal DMSP-OLS night-time data. Environ. Manag. 2018, 61, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, F.; Fu, Y.; Guo, B.; Zhao, Y.; Yu, H. A Novel SUHI Referenced Estimation Method for Multicenters Urban Agglomeration using DMSP/OLS Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1416–1425. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
Variables | Unit | Guangzhou | Dongguan | Shenzhen | Foshan | Zhongshan | Zhuhai | Huizhou | Zhaoqing | Jiangmen | |
---|---|---|---|---|---|---|---|---|---|---|---|
Constant variables | |||||||||||
Administrative area | km2 | 7215.27 | 2449.57 | 1942.73 | 3795.64 | 1744.12 | 1579.48 | 11,319.16 | 14,898.67 | 9365.96 | |
Mean Elevation | m | 110.96 | 42.86 | 90.25 | 24.50 | 23.51 | 38.21 | 167.26 | 207.32 | 77.80 | |
Changeable variables | |||||||||||
Average air temperature | °C | +0.18 | +2.69 | +3.04 | +1.55 | +2.32 | +3.94 | +2.12 | +2.97 | +3.07 | |
Permanent population | 10,000 persons | +42.16 | +25.81 | +37.47 | +28.11 | +31.83 | +15.43 | +28.29 | +10.44 | +10.15 | |
Electricity consumption | 100 million kw/h | +83.08 | +58.84 | +83.25 | +85.85 | +98.58 | +136.07 | +176.20 | +213.50 | +108.69 | |
Cultivated land percentage | % | −6.18 | −18.54 | −11.50 | −7.78 | −7.49 | −4.45 | −3.68 | −1.33 | −2.31 | |
Woodland percentage | % | −2.05 | −9.40 | −4.42 | −3.45 | −2.75 | −1.43 | −1.00 | −0.73 | −1.28 | |
Grassland percentage | % | −3.05 | −5.37 | −3.31 | −5.88 | 0.00 | −20.00 | +9.72 | +25.63 | +10.09 | |
Water area percentage | % | −4.00 | -8.53 | −14.48 | −7.87 | −5.56 | −12.70 | +1.07 | −1.65 | −1.74 | |
Construction land percentage | % | +19.43 | +14.81 | +9.95 | +21.65 | +16.55 | +22.99 | +25.68 | +16.73 | +18.89 | |
Unused land percentage | % | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | −33.33 | |
Gross domestic product (GDP) | 1000 yuan/km2 | +284.58 | +266.61 | -27.47 | +225.57 | +329.39 | +226.23 | +123.42 | +253.53 | +196.55 | |
Population density (POP) | Person/km2 | +85.52 | +385.87 | +389.66 | +104.63 | +121.56 | +65.99 | +66.93 | +12.07 | +19.09 | |
Nighttime light index (NLI) | __ | +66.05 | +27.98 | +32.53 | +49.68 | +39.19 | +71.48 | +96.06 | +123.03 | +117.74 | |
Normalized difference vegetation index (NDVI) | __ | +8.20 | +9.09 | +17.65 | +2.00 | −2.00 | +1.82 | +6.76 | +3.85 | +2.78 | |
Impervious surface distribution density (ISDD) | __ | +35.71 | +28.57 | +22.58 | +28.00 | +40.91 | +66.67 | +66.67 | +100.00 | +25.00 |
Drivers | Variables | Original Resolution/Resample Resolution | Time | Source |
---|---|---|---|---|
Physiographical factor | Elevation | 1 km/1 km | / | www.resdc.cn |
Land cover factors | Land use/land cover (LUCC) | 1 km/1 km | 2005, 2015 | www.resdc.cn |
NDVI | 1 km/1 km | 2005, 2015 | www.resdc.cn | |
ISDD | 30 m/1 km | 2005, 2015 | https://doi.org/10.6084/m9.figshare.11513178.v1 | |
Socio-economic factors | GDP | 1 km/1 km | 2005, 2015 | www.resdc.cn |
POP | 1 km/1 km | 2005, 2015 | www.resdc.cn | |
NLI | 1 km/1 km | 2005 | www.resdc.cn | |
750 m/1 km | 2015 | http://ngdc.noaa.gov |
Description | Interaction Effect |
---|---|
q(X1∩X2) > Min (q(X1), q(X2)) | Enhance |
q(X1∩X2) > Max (q(X1), q(X2)) | Bi-enhance |
q(X1∩X2) > q(X1) + q(X2) | Enhance, nonlinear |
q(X1∩X2) = q(X1) + q(X2) | Independent |
q(X1∩X2) < q(X1) + q(X2) | Weaken |
q(X1∩X2) < Max (q(X1), q(X2)) | Weaken, un-enhance |
q(X1∩X2) < Min (q(X1), q(X2)) | Weaken, nonlinear |
Variables | Guangzhou | Dongguan | Shenzhen | Foshan | Zhongshan | Zhuhai | Huizhou | Zhaoqing | Jiangmen | |
---|---|---|---|---|---|---|---|---|---|---|
Daytime LST (°C) | 2005 | 27.04 | 28.66 | 28.00 | 27.27 | 27.29 | 26.44 | 26.56 | 25.76 | 26.31 |
2015 | 27.47 | 30.28 | 29.38 | 28.30 | 28.64 | 27.56 | 26.92 | 25.93 | 27.04 | |
variation | 0.43 | 1.62 | 1.38 | 1.03 | 1.35 | 1.12 | 0.36 | 0.17 | 0.73 | |
Ratio of daytime HSAs to city area | 2005 | 0.26 | 0.63 | 0.51 | 0.25 | 0.26 | 0.06 | 0.19 | 0.04 | 0.03 |
2015 | 0.22 | 0.74 | 0.58 | 0.34 | 0.39 | 0.14 | 0.11 | 0.01 | 0.06 | |
variation | −0.04 | 0.10 | 0.07 | 0.09 | 0.13 | 0.07 | −0.08 | −0.03 | 0.03 | |
Nighttime LST (°C) | 2005 | 16.76 | 17.88 | 17.76 | 18.12 | 18.48 | 18.58 | 16.06 | 16.08 | 17.44 |
2015 | 17.61 | 19.31 | 19.02 | 18.68 | 19.64 | 19.49 | 17.27 | 17.00 | 18.38 | |
variation | 0.85 | 1.43 | 1.26 | 0.56 | 1.16 | 0.91 | 1.21 | 0.92 | 0.94 | |
Ratio of nighttime HSAs to city area | 2005 | 0.23 | 0.50 | 0.39 | 0.59 | 0.78 | 0.83 | 0.02 | 0.04 | 0.20 |
2015 | 0.19 | 0.71 | 0.53 | 0.36 | 0.79 | 0.76 | 0.04 | 0.02 | 0.22 | |
variation | −0.04 | 0.21 | 0.15 | −0.23 | 0.01 | −0.07 | 0.02 | −0.01 | 0.03 |
HSAs Level | LST Range (°C) | |
---|---|---|
Daytime | Nighttime | |
Level 1 | <=28.78 | <=18.36 |
Level 2 | 28.78~29.42 | 18.36~18.90 |
Level 3 | 29.42–30.19 | 18.90~19.30 |
Level 4 | 30.19~31.22 | 19.30~19.76 |
Level 5 | >31.22 | >19.76 |
Year | Region | Elevation | LUCC | NDVI | ISDD | POP | GDP | NLI |
---|---|---|---|---|---|---|---|---|
2005 day | PRD | 0.50 | 0.35 | 0.40 | 0.30 | 0.26 | 0.25 | 0.36 |
2015 day | PRD | 0.50 | 0.43 | 0.50 | 0.44 | 0.37 | 0.31 | 0.58 |
2005 night | PRD | 0.41 | 0.30 | 0.44 | 0.32 | 0.45 | 0.35 | 0.45 |
2015 night | PRD | 0.43 | 0.31 | 0.45 | 0.34 | 0.33 | 0.29 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Meng, Q.; Allam, M.; Zhang, L.; Hu, D.; Menenti, M. Driving Factors of Land Surface Temperature in Urban Agglomerations: A Case Study in the Pearl River Delta, China. Remote Sens. 2021, 13, 2858. https://doi.org/10.3390/rs13152858
Liu W, Meng Q, Allam M, Zhang L, Hu D, Menenti M. Driving Factors of Land Surface Temperature in Urban Agglomerations: A Case Study in the Pearl River Delta, China. Remote Sensing. 2021; 13(15):2858. https://doi.org/10.3390/rs13152858
Chicago/Turabian StyleLiu, Wenxiu, Qingyan Meng, Mona Allam, Linlin Zhang, Die Hu, and Massimo Menenti. 2021. "Driving Factors of Land Surface Temperature in Urban Agglomerations: A Case Study in the Pearl River Delta, China" Remote Sensing 13, no. 15: 2858. https://doi.org/10.3390/rs13152858
APA StyleLiu, W., Meng, Q., Allam, M., Zhang, L., Hu, D., & Menenti, M. (2021). Driving Factors of Land Surface Temperature in Urban Agglomerations: A Case Study in the Pearl River Delta, China. Remote Sensing, 13(15), 2858. https://doi.org/10.3390/rs13152858