Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.2. Remote Sensing-OBIA (RSOBIA)
- ID: Consecutive number of polygon (useful for identification);
- AREA: Size of polygon (in units of the original imagery);
- MEAN: Average of classes of all pixels in polygon (useful for finding outliers);
- STD: Standard deviation of classes of all pixels in polygon (low values show good cluster correspondence);
- SUM: Sum of all classes of all pixels in polygon;
- MAJORITY: Most common class of all pixels in polygon (this is the main class for interpretation).
3.3. Classification
3.4. Validation
4. Results
4.1. RSOBIA Segmentation Results
4.2. The Benthic Habitat Map of the Southern Adriatic Sea
4.2.1. Western Side
- the areas containing samples proving CWC occurrence have been interpreted as consolidated substrates;
4.2.2. Eastern Side
4.3. Accuracy Assessment
5. Discussion
5.1. Acoustic Issues
5.2. Ground-Truthing Issues
6. Conclusions
- Issues in segmenting and classifying acoustic facies, especially due to the use of uncalibrated and non-comparable acoustic reflectivity data (different SSS and MBES backscatter datasets, acquired with different devices, frequencies and oceanographic conditions);
- Sampling strategies carried out for different aims, not ground-truthing acoustic facies, and resulting in a dataset (i) with a sampling density highly variable within the mapped area and (ii) collected in a time span of about 50 years.
- pplication of sampling strategies appropriate for benthic habitat mapping purpose (i.e., the collection of a suitable number of bottom samples homogeneously distributed in the study area).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collier, J.S.; Brown, C.J. Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments. Mar. Geol. 2005, 214, 431–449. [Google Scholar] [CrossRef]
- McGonigle, C.; Collier, J.S. Interlinking backscatter, grain size and benthic community structure. Estuar. Coast Shelf Sci. 2014, 147, 123–136. [Google Scholar] [CrossRef]
- Lurton, X.; Lamarche, G. Backscatter Measurements by Seafloor-Mapping Sonars: Guidelines and Recommendations; GeoHab Backscatter Working Group: Eastsound, WA, USA, 2015; p. 200. [Google Scholar]
- Brown, C.J.; Smith, S.J.; Lawton, P.; Anderson, J.T. Benthic habitat mapping A review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuar. Coast Shelf Sci. 2011, 92, 502–520. [Google Scholar] [CrossRef]
- Lamarche, G.; Orpin, A.R.; Mitchell, J.S.; Pallentin, A. Benthic habitat mapping. In Biological Sampling in the Deep Sea; Clark, M.R., Consalvey, M., Rowden, A.A., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2016; pp. 80–102. [Google Scholar]
- Harris, P.T.; Baker, E.K. Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012; p. 936. [Google Scholar]
- Diesing, M.; Green, S.L.; Stephens, D.; Lark, R.M.; Stewart, H.A.; Dove, D. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 2014, 84, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Minisini, D.; Trincardi, F.; Asioli, A. Evidence of slope instability in the Southwestern Adriatic Margin. Nat. Hazards Earth Sys. 2006, 6, 1–20. [Google Scholar] [CrossRef]
- Trincardi, F.; Taviani, M.; Foglini, F.; Verdicchio, G.; Asioli, A.; Correggiari, A.; Minisini, D.; Piva, A.; Remia, A.; Ridente, D. The impact of cascading currents on the Bari Canyon System, SW-Adriatic Margin (Central Mediterranean). Mar. Geol. 2007, 246, 208–230. [Google Scholar] [CrossRef]
- Trincardi, F.; Campiani, E.; Correggiari, A.; Foglini, F.; Maselli, V.; Remia, A. Bathymetry of the Adriatic Sea: The legacy of the last eustatic cycle and the impact of modern sediment dispersal. J. Maps 2014, 10, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Foglini, F.; Campiani, E.; Trincardi, F. The reshaping of the South West Adriatic Margin by cascading of dense shelf waters. Mar. Geol. 2016, 375, 64–81. [Google Scholar] [CrossRef]
- Angeletti, L.; Bargain, A.; Campiani, E.; Foglini, F.; Grande, G.; Leidi, E.; Mercorella, A.; Prampolini, M.; Taviani, M. Cold-water coral habitat mapping in the Mediterranean Sea: Methodologies and perspectives. In Mediterranean Cold-Water Corals: Past, Present and Future. Coral Reefs of the World; Orejas, C., Jimenez, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 9, pp. 173–189. [Google Scholar]
- Prampolini, M.; Angeletti, L.; Grande, V.; Taviani, M.; Foglini, F. Chapter 48—The case study of Tricase Canyon: Cold-water coral habitats in the south-westernmost Apulian margin (Mediterranean Sea). In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats, 2nd ed.; Harris, P.T., Baker, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 793–810. [Google Scholar]
- Verdicchio, G.; Trincardi, F.; Asioli, A. Mediterranean bottom-current deposits: An example from the Southwestern Adriatic margin. Geol. Soc. Lond. Spec. Publ. 2007, 276, 199–224. [Google Scholar] [CrossRef]
- Grande, V.; Angeletti, L.; Campiani, E.; Conese, I.; Foglini, F.; Leidi, E.; Mercorella, A.; Taviani, M. “Habitat Mapping” Geodatabase, an integrated interdisciplinary and multi-scale approach for data management. In Proceedings of the International Meeting GeoSub2015—Underwater Geology, Trieste, Italy, 13–16 October 2015. [Google Scholar]
- Taviani, M.; Angeletti, L.; Beuck, L.; Campiani, E.; Canese, S.; Foglini, F.; Freiwald, A.; Montagna, P.; Trincardi, F. Reprint of ‘on and off the beaten track: Megafaunal sessile life and Adriatic cascading processes’. Mar. Geol. 2016, 375, 146–160. [Google Scholar] [CrossRef]
- Bargain, A.; Foglini, F.; Pairaud, I.; Bonaldo, D.; Carniel, S.; Angeletti, L.; Taviani, M.; Rochette, S.; Fabri, M.C. Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables. Prog. Oceanogr. 2018, 169, 151–168. [Google Scholar] [CrossRef]
- Angeletti, L.; Prampolini, M.; Foglini, F.; Grande, V.; Taviani, M. Chapter 49—Cold-water coral habitat in the Bari Canyon System, Southern Adriatic Sea (Mediterranean Sea). In Seafloor Geomorphology as Benthic Habitat: GeoHab Atlas of Seafloor Geomorphic Features and Benthic Habitats, 2nd ed.; Harris, P.T., Baker, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 811–824. [Google Scholar]
- Angeletti, L.; Canese, S.; Cardone, F.; Castellan, G.; Foglini, F.; Taviani, M. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. 2020, 30, 402–411. [Google Scholar] [CrossRef]
- Rovere, M.; Pellegrini, C.; Chiggiato, J.; Campiani, E.; Trincardi, F. Impact of dense bottom water on a continental shelf: An example from the SW Adriatic margin. Mar. Geol. 2019, 408, 123–143. [Google Scholar] [CrossRef]
- Lamarche, G.; Lurton, X. Recommendations for improved and coherent acquisition and processing of backscatter data from seafloor-mapping sonars. Mar. Geophys. Res. 2018, 39, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Bellec, V.K.; Boe, R.; Rise, L.; Lepland, A.; Thorsnes, T.; Bjarnadòttir, L.R. Seabed sediments (grain size) of Nordland VI, offshore north Norway. JOM 2017, 13, 608–620. [Google Scholar] [CrossRef] [Green Version]
- Lacharité, M.; Brown, C.J.; Gazzola, V. Multisource multibeam backscatter data: Developing a strategy for the production of benthic habitat maps using semi-automated seafloor classification methods. Mar. Geophys. Res. 2018, 39, 307–322. [Google Scholar] [CrossRef]
- Snellen, M.; Gaida, T.C.; Koop, L.; Alevizos, E.; Simons, D.G. Performance of Multibeam Echosounder Backscatter-Based classification for Monitoring Sediment Distributions Using Multitemporal Large-Scale Ocean Data Sets. IEEE J. Ocean. Eng. 2019, 44, 142–155. [Google Scholar] [CrossRef] [Green Version]
- Le Bas, T.P. RSOBIA—A new OBIA Toolbar and Toolbox in ArcMap 10× for Segmentation and Classification. In GEOBIA 2016: Solutions and Synergies; Kerle, N., Gerke, M., Lefevre, S., Eds.; University of Twente Faculty of Geo-Information and Earth Observation (ITC): Enschede, The Netherlands, 2016. [Google Scholar]
- Innangi, S.; Tonielli, R.; Romagnoli, C.; Budillon, F.; Di Martino, G.; Innangi, M.; Laterza, R.; Le Bas, T.; Lo Iacono, C. Seabed mapping in the Pelagie Islands marine protected area (Sicily Channel, southern Mediterranean) using Remote Sensing Object Based Image Analysis (RSOBIA). Mar. Geophys. Res. 2019, 40, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Diesing, M.; Mitchell, P.J.; O’Keeffe, E.; Gavazzi, G.O.A.M.; Bas, T.L. Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed. Remote Sens. 2020, 12, 3398. [Google Scholar] [CrossRef]
- Argnani, A.; Bonazzi, C.; Evangelisti, D.; Favali, P.; Frugoni, F.; Gasperini, M.; Ligi, M.; Marani, M.; Mele, G. Tettonica dell’Adriatico meridionale. Mem. Soc. Geol. Italy 1996, 51, 227–237. [Google Scholar]
- Ricci Lucchi, F. The Oligocene to Recent foreland basins of the Northern Apennines. In Foreland Basins; Allen, P.A., Homewood, P., Eds.; IAS Special Publication 8; Blackwell Scientific Oxford: Oxford, UK, 1986; pp. 105–139. [Google Scholar]
- Doglioni, C.; Mongelli, F.; Pieri, P. The Puglia uplift (SE Italy): An anomaly in the foreland of the Apennine subduction due to buckling of a thick continental lithosphere. Tectonics 1994, 13, 1309–1321. [Google Scholar] [CrossRef]
- Tramontana, M.; Morelli, D.; Colantoni, P. Tettonica plio–quaternaria del sistema sud-garganico (settore orientale) nel quadro evolutivo dell’Adriatico centro meridionale. Studi Geol. Camerti 1995, 2, 467–473. [Google Scholar]
- Wortmann, U.G.; Weissert, H.; Funk, H.; Hauck, J. Alpine plate kinematics revisited: The Adria problem. Tectonics 2001, 20, 134–147. [Google Scholar] [CrossRef]
- Ridente, D.; Foglini, F.; Minisini, D.; Trincardi, F.; Verdicchio, G. Shelf-edge erosion, sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean). Mar. Geol. 2007, 246, 193–207. [Google Scholar] [CrossRef]
- Taviani, M.; Angeletti, L.; Campiani, E.; Ceregato, A.; Foglini, F.; Maselli, V.; Morsilli, M.; Parise, M.; Trincardi, F. Drowned karst landscape offshore the Apulian Margin (Southern Adriatic Sea, Italy). J. Cave Karst Stud. 2012, 74, 197–212. [Google Scholar] [CrossRef]
- Bracchi, V.A.; Savini, A.; Marchese, F.; Palamara, S.; Basso, D.; Corselli, C. Coralligenous habitat in the Mediterranean Sea: A geomorphological description from remote data. Ital. J. Geosci. 2015, 134, 32–40. [Google Scholar] [CrossRef]
- Angeletti, L.; Taviani, M. Offshore Neopycnodonte oyster reefs in the Mediterranean Sea. Diversity 2020, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Galloway, W.E. Siliciclastic Slope and Base-of-Slope Depositional systems: Component facies, stratigraphic architecture, and classification. AAPG Bull. 1988, 82, 569–595. [Google Scholar]
- Argnani, A.; Bonazzi, C.; Rovere, M. Tectonics and large-scale mass wasting along the slope of the southern Adriatic basin. Geophys. Res. Abstr. 2006, 8, 19–20. [Google Scholar]
- Argnani, A.; Tinti, S.; Zaniboni, F.; Pagnoni, G.; Armigliato, A.; Panetta, D.; Tonini, R. The eastern slope of the southern Adriatic basin: A case study of submarine landslide characterization and tsunamigenic potential assessment. Mar. Geophys. Res. 2011, 32, 299–311. [Google Scholar] [CrossRef]
- Del Bianco, F.; Gasperini, L.; Giglio, F.; Bortoluzzi, G.; Kljajic, Z.; Ravaioli, M. Seafloor morphology of the Montenegro/N. Albania Continental Margin (Adriatic Sea—Central Mediterranean). Geomorphology 2014, 226, 202–216. [Google Scholar] [CrossRef]
- Del Bianco, F.; Gasperini, L.; Angeletti, L.; Giglio, F.; Bortoluzzi, G.; Montagna, P.; Ravaioli, M.; Kljaijc, Z. Stratigraphic architecture of the Montenegro/N. Albania continental margin (Adriatic Sea—Central Mediterranean). Mar. Geol. 2015, 359, 61–74. [Google Scholar] [CrossRef]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2020). EMODnet Bathymetry Consort. 2020. [Google Scholar] [CrossRef]
- Le Bas, T.P.; Mason, D.C.; Millard, N.W. TOBI image processing—the state of the art. IEEE J. Ocean. Eng. 1995, 20, 85–93. [Google Scholar] [CrossRef]
- Le Bas, T.P. PRISM—Processing of Remotely-sensed Imagery for Seafloor Mapping—Version 4.0. Natl. Oceanogr. Cent. Southampt. Rep. 2005, unpublished. [Google Scholar]
- Consiglio Nazionale delle Ricerche, Laboratorio per la Geologia Marina. Rapporto Tecnico n. 6-I campioni prelevati dal laboratorio di geologia marina negli anni 1967–1974; Dati Essenziali; Centro Stampa Lo Scarabeo: Bologna, Italy, 1977; p. 85. [Google Scholar]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Lucieer, V.; Lamarche, G. Unsupervised fuzzy classification and object-based image analysis of multibeam data to map deep water substrates, Cook Strait, New Zealand. Cont. Shelf Res. 2011, 31, 1236–1247. [Google Scholar] [CrossRef]
- Diesing, M.; Mitchell, P.; Stephens, D. Image-based seabed classification: What can we learn from terrestrial remote sensing? ICES J. Mar. Sci. 2016, 73, 2425–2441. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. A 1974, 3, 1–27. [Google Scholar] [CrossRef]
- P.O. FESR 2007/2013-ASSE IV-LINEA 4.4-Azione 4.4.1. Interventi per la rete ecologica. BIOcostruzioni Marine in Puglia—BIOMAP. Final Report. 2014. Available online: https://trasparenza.regione.puglia.it/provvedimenti/provvedimenti-della-giunta-regionale/120738 (accessed on 21 July 2021).
- Bracchi, V.A.; Basso, D.; Marchese, F.; Corselli, C.; Savini, A. Coralligenous morphotypes on subhorizontal substrate: A new categorization. Cont. Shelf Res. 2017, 144, 10–20. [Google Scholar] [CrossRef]
- Corriero, G.; Pierri, C.; Mercurio, M.; Nonnis Marzano, C.; Onen Tartarini, S.; Gravina, M.F.; Lisco, S.; Moretti, M.; De Giosa, F.; Valenzano, E.; et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. UK 2019, 9, 3601. [Google Scholar] [CrossRef]
- Cardone, F.; Corriero, G.; Longo, C.; Mercurio, M.; Tarantini, S.O.; Gravina, M.F.; Lisco, S.; Moretti, M.; De Giosa, F.; Giangrande, A.; et al. Massive bioconstructions built by Neopycnodonte cochlear (Mollusca, Bivalvia) in a mesophotic environment in the central Mediterranean Sea. Sci. Rep. UK 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freiwald, A.; Beuck, L.; Rüggeberg, A.; Taviani, M.; Hebbeln, D.; R/V Meteor Cruise M70-1 Participants. The white coral community in the central Mediterranean revealed by ROV surveys. Oceanography 2009, 22, 5874. [Google Scholar] [CrossRef] [Green Version]
- Taviani, M.; Angeletti, L.; Antolini, B.; Ceregato, A.; Froglia, C.; López Correa, M.; Montagna, P.; Remia, A.; Trincardi, F.; Vertino, A. Geo-biology of Mediterranean deep-water coral ecosystems. In Marine Research at CNR; Beatrici, D., Braico, P., Cappelletto, M., Gallo, E., Mazari Villanova, L., Moretti, P.F., Eds.; DTA/6: Rome, Italy, 2011; p. 7052720. [Google Scholar]
- Angeletti, L.; Taviani, M.; Canese, S.; Foglini, F.; Mastrototaro, F.; Argnani, A.; Trincardi, F.; Bakran-Petricioli, T.; Ceregato, A.; Chimienti, G.; et al. New deep-water cnidarian sites in the southern Adriatic Sea. Mediterr Mar. Sci. 2014, 15, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Castellan, G.; Angeletti, L.; Taviani, M.; Montagna, P. The Yellow Coral Dendrophyllia cornigera in a Warming Ocean. Front. Mar. Sci. 2019, 6, 692. [Google Scholar] [CrossRef] [Green Version]
- Boero, F.; Foglini, F.; Fraschetti, S.; Goriup, P.; Macpherson, E.; Planes, S.; Soukissian, T.; The CoCoNet Consortium. CoCoNet: Towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. SCIRES IT 2016, 6, 1–95. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available online: https://www.R-project.org/ (accessed on 24 May 2021).
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 1, 5. [Google Scholar]
- Biocostruzioni Marine in Puglia. Available online: http://www.sit.puglia.it/portal/portale_rete_ecologica/biomap (accessed on 8 June 2021).
- Cattaneo, A.; Correggiari, A.; Langone, L.; Trincardi, F. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Mar. Geol. 2003, 193, 61–91. [Google Scholar] [CrossRef]
- Trincardi, F.; Taviani, M.; Freiwald, A.; Angeletti, L.; Foglini, F.; Minisini, D.; Piva, A.; Verdicchio, G. An actualistic scenario for olistostrome genesis and emplacement (Gondola Slide, SW Adriatic Margin). In Proceedings of the 84° Congresso Nazionaledella Società Geologica Italiana, Sassari, Italy, 15–17 September 2008; pp. 762–763. [Google Scholar]
- Würtz, M. Submarine canyons and their role in the Mediterranean ecosystem. In IUCN Mediterranean Submarine Canyons: Ecology and Governance; Würtz, M., Ed.; IUCN: Gland, Switzerland; Málaga, Spain, 2012; pp. 11–26. [Google Scholar]
- Angeletti, L.; D’Onghia, G.; Otero, M.M.; Settanni, A.; Spedicato, M.T.; Taviani, M. A Perspective for Best Governance of the Bari Canyon Deep-Sea Ecosystems. Water 2021, 13, 1646. [Google Scholar] [CrossRef]
- Higgins, M.D.; Higgnins, R. A Geological Companion to Greece and the Aegean; Cornell University Press: Itaca, NY, USA, 1996; p. 254. [Google Scholar]
- Angeletti, L.; Canese, S.; Franchi, F.; Montagna, P.; Reitner, J.; Walliser, E.O.; Taviani, M. The “chimney forest” of the deep Montenegrin margin, south-eastern Adriatic Sea. Mar. Pet. Geol. 2015, 66, 542–554. [Google Scholar] [CrossRef]
- Chimienti, G.; Angeletti, L.; Furfaro, G.; Canese, S.; Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. 2020, 165, 103364. [Google Scholar] [CrossRef]
- Savini, A.; Vertini, A.; Marchese, F.; Beuck, L.; Freiwald, A. Mapping Cold-Water Coral Habitats at Different Scales within the Northern Ionian Sea (Central Mediterranean): An Assessment of Coral Coverage and Associated Vulnerability. PLoS ONE 2014, 9, e87108. [Google Scholar] [CrossRef] [Green Version]
- Ismail, K.; Huvenne, V.A.I.; Masson, D.G. Objective automated classification technique for marine landscape mapping in submarine canyons. Mar. Geol. 2015, 362, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Misiuk, B.; Brown, C.J.; Robert, K.; Lacharité, M. Harmonizing Multi-Source Sonar Backscatter Datasets for Seabed Mapping Using Bulk Shift Approaches. Remote Sens. 2020, 12, 601. [Google Scholar] [CrossRef] [Green Version]
- Hughes Clarke, J.E.; Iwanowska, K.K.; Parrott, R.; Duffy, G.; Lamplugh, M.; Griffin, J. Inter-calibrating multi-source, multi-platform backscatter data sets to assist in compiling regional sediment type maps: Bay of Fundy. In Proceedings of the Canadian Hydrographic Conference and National Surveyors Conference, Victoria, BC, Canada, 6 May 2008; p. 22. [Google Scholar]
- Hughes Clarke, J.E. Multispectral acoustic backscatter from multibeam, improved classification potential. In Proceedings of the United States Hydrographic Conference 2015, National Harbour, MD, USA, 16–19 March 2015; pp. 15–19. [Google Scholar]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cuff, A.; Anderson, J.T.; Devillers, R. Comparing surficial sediments maps interpreted by experts with dual-frequency acoustic backscatter on the Scotian shelf, Canada. Cont. Shelf Res. 2015, 110, 149–161. [Google Scholar] [CrossRef]
- Brown, C.J.; Beaudoin, J.; Brissette, M.; Gazzola, V. Setting the Stage for Multi-Spectral Acoustic Backscatter Research. In Program and Abstracts, 2017 GeoHab Conference, Dartmouth, Nova Scotia, Proceeding of the GEOHAB2017, Dartmouth, NS, Canada, 2–6 May 2017; Todd, B.J., Brown, C.J., Lacharité, M., Gazzola, V., McCormack, E., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 2017; Volume 2017, p. 41. [Google Scholar]
- Janowski, L.; Trzcinska, K.; Tegowski, J.; Kruss, A.; Rucinska-Zjadacz, M.; Pocwiardowski, P. Nearshore Benthic Habitat Mapping Based on Multi-Frequency, Multibeam Echosounder Data Using a Combined Object-Based Approach: A Case Study from the Rowy Site in the Southern Baltic Sea. Remote Sens. 2018, 10, 1983. [Google Scholar] [CrossRef] [Green Version]
- Feldens, P.; Schulze, I.; Papenmeier, S.; Schönke, M.; Schneider von Deimling, J. Improved interpretation of marine sedimentary environments using multi-frequency multibeam backscatter data. Geosciences 2018, 8, 214. [Google Scholar] [CrossRef]
- Costa, B.M. Multispectral Acoustic Backscatter: How Useful Is it for Marine Habitat Mapping and Management? J. Coast. Res. 2019, 35, 1062. [Google Scholar] [CrossRef]
- Gaida, T.C.; Mohammadloo, T.H.; Snellen, M.; Simons, D.G. Mapping the Seabed and Shallow Subsurface with Multi-Frequency Multibeam Echosounders. Remote Sens. 2020, 12, 52. [Google Scholar] [CrossRef] [Green Version]
- Eleftherakis, D.; Berger, L.; Le Bouffant, N.; Pacault, A.; Augustin, J.-M.; Lurton, X. Backscatter calibration of high-frequency multibeam echosounder using a reference single-beam system, on natural seafloor. Mar. Geophys. Res. 2018, 39, 55–73. [Google Scholar] [CrossRef] [Green Version]
Dataset | Date | Device | Nominal Depth Range | Frequency | Beam Width | No. of Beams | Swath Width |
---|---|---|---|---|---|---|---|
MAGIC0409 | 2009 | Kongsberg EM710 | 100–900 m | 70–100 kHz | 1° × 1° | 258 | 5.5× depth |
ARCADIA | 2010 | ||||||
OBAMA-A,B | 2011 | ||||||
MAGIC0211 | 2011 | ||||||
MEMA12-A,B,C | 2012 | ||||||
COCOMAP13-A | 2013 | ||||||
COCOMAP14-A | 2014 | ||||||
ALTRO | 2013 | ||||||
MAGIC0709 | 2009 | Kongsberg EM3002D | 30–100 m | 300 kHz | 1.5° × 1.5° | 508 | 10× depth |
MAGIC0910-A,B,C | 2010 | ||||||
COCOMAP13-B | 2013 | Kongsberg EM302 | 10–7000 m | 30 kHz | 0.5° × 0.5° | 288 | 5.5× depth |
COCOMAP14-B | 2014 | ||||||
MS15 | 2015 | Reson Seabat 7160 | 3–3000 m | 44 kHz | 1.5° × 1.5° | 512 | 4× depth |
SAGA03 | 2003 | TOBI side-scan sonar | 6000 m | 32 kHz | - | - | 6000 m |
Datasets | Variables | Weights | No. of Clusters Expected | Min. Object Size | No. of Clusters Resulted |
---|---|---|---|---|---|
SAGA03 | SSS backscatter | 1 | 0 | 1000 | 6 |
MS15 | MBES backscatter | 1 | 3 | 1000 | 3 |
MAGIC0409 | MBES backscatter | 3 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 2 | ||||
MAGIC0709 | MBES backscatter | 3 | 6 | 1000 | 6 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 2 | ||||
ARCADIA | MBES backscatter | 3 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
BPI (3 × 3) | 1 | ||||
MAGIC0910-A | MBES backscatter | 1 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 3 | ||||
MAGIC0910-B | MBES backscatter | 1 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 3 | ||||
MAGIC0910-C | MBES backscatter | 1 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 3 | ||||
MAGIC0211-A | MBES backscatter | 3 | 6 | 1000 | 7 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
MAGIC0211-B | MBES backscatter | 3 | 6 | 1000 | 6 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
MEMA12-A | MBES backscatter | 3 | 5 | 1000 | 6 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 1 | ||||
MEMA12-B | MBES backscatter | 3 | 5 | 1000 | 6 |
Bathymetry | 1 | ||||
Roughness | 1 | ||||
MEMA12-C | MBES backscatter | 3 | 6 | 1000 | 4 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
BPI (3 × 3) | 1 | ||||
OBAMA-A | MBES backscatter | 1 | 6 | 1000 | 5 |
OBAMA-B | MBES backscatter | 1 | 6 | 1000 | 4 |
COCOMAP13-A | MBES backscatter | 2 | 5 | 1000 | 5 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
COCOMAP13-B | MBES backscatter | 3 | 5 | 1000 | 5 |
Bathymetry | 1 | ||||
BPI (3 × 3) | 1 | ||||
COCOMAP14-A | MBES Backscatter | 3 | 0 | 1000 | 6 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
Roughness | 1 | ||||
COCOMAP14-B | MBES backscatter | 2 | 4 | 1000 | 4 |
Bathymetry | 1 | ||||
Slope | 1 | ||||
Roughness | 1 | ||||
ALTRO | MBES backscatter | 1 | 0 | 1000 | 8 |
Component | Code | Description |
---|---|---|
Substrate | S010101 | Consolidated substrate-Rock substrate-Bedrock |
S010102 | Consolidated substrate-Rock substrate-Block and boulder | |
S010103 | Consolidated substrate-Rock substrate-Lithified sediment | |
S010200 | Consolidated substrate-Biogenic consolidated substrate | |
S020101 | Semi consolidated substrate-Firmground-Cohesive mud | |
S030213 | Unconsolidated substrate-Coarse unconsolidated substrate-Gravelly mud | |
S030301 | Unconsolidated substrate-Fine unconsolidated substrate-Sand | |
S030302 | Unconsolidated substrate-Fine unconsolidated substrate-Bioclastic sand | |
S030305 | Unconsolidated substrate-Fine unconsolidated substrate-Muddy sand | |
S030309 | Unconsolidated substrate-Fine unconsolidated substrate-Sandy mud | |
S030313 | Unconsolidated substrate-Fine unconsolidated substrate-Mud | |
Biology | B040203 | Meadow-Seagrass-Posidonia oceanica |
B0602 | Bed-Rhodolith bed | |
B080308 | Forest-Coral forest-Callogorgia verticillata | |
B090210 | Bioconstruction-Coral reef-Madrepora oculata | |
B0903 | Bioconstruction-Oyster reef | |
B090304 | Bioconstruction-Oyster reef-Neopycnodonte cochlear | |
B0907 | Bioconstruction-Coralligenous |
Classification | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S010101 | B090210 | S030302 | S030302 + B0602 | S030302 + B09 | S030302 + B0907 | S030302 + B040203 | S030302 + S030313 + B0907 | S0102 + B09 | S010102 + B090210 | S0201 | S0201+ B090210 | S030213 + S030305 | S010104 | S010104 + B090210 | S010104 + S030313 + B090210 | S030313 | S030313 + B090210 | S030305 | S030305 + S030309 | S030309 | Tot | %Corrected | ||
Reference samples | S010101 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
B090210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
S030302 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | |
S030302+ B0602 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 100 | |
S030302 + B09 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
S030302 + B0907 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | |
S030302 + B040203 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 100 | |
S030302 + S030313 + B0907 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
S0102 + B09 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
S010102 + B090210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
S0201 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 100 | |
S0201 + B090210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
S030213 + S030305 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 6 | 0 | 10 | 10 | |
S010104 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 100 | |
S010104 + B090210 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | |
S010104 + S030313 + B090210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
S030313 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 13 | 0 | 0 | 4 | 0 | 21 | 62 | |
S030313 + B090210 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | |
S030305 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 5 | 20 | |
S030305 + S030309 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 33 | |
S030309 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 5 | 40 | |
Tot | 0 | 12 | 0 | 5 | 3 | 0 | 2 | 3 | 1 | 2 | 7 | 0 | 2 | 1 | 0 | 3 | 13 | 0 | 1 | 19 | 2 | 76 | ||
%Corrected | 0 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 50 | 100 | 0 | 50 | 100 | 0 | 0 | 100 | 0 | 100 | 5 | 100 | 44.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prampolini, M.; Angeletti, L.; Castellan, G.; Grande, V.; Le Bas, T.; Taviani, M.; Foglini, F. Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sens. 2021, 13, 2913. https://doi.org/10.3390/rs13152913
Prampolini M, Angeletti L, Castellan G, Grande V, Le Bas T, Taviani M, Foglini F. Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sensing. 2021; 13(15):2913. https://doi.org/10.3390/rs13152913
Chicago/Turabian StylePrampolini, Mariacristina, Lorenzo Angeletti, Giorgio Castellan, Valentina Grande, Tim Le Bas, Marco Taviani, and Federica Foglini. 2021. "Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data" Remote Sensing 13, no. 15: 2913. https://doi.org/10.3390/rs13152913
APA StylePrampolini, M., Angeletti, L., Castellan, G., Grande, V., Le Bas, T., Taviani, M., & Foglini, F. (2021). Benthic Habitat Map of the Southern Adriatic Sea (Mediterranean Sea) from Object-Based Image Analysis of Multi-Source Acoustic Backscatter Data. Remote Sensing, 13(15), 2913. https://doi.org/10.3390/rs13152913