3D Point Clouds in Forest Remote Sensing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimont, F.; Soma, M.; Dupuy, J.-L. Accounting for Wood, Foliage Properties, and Laser Effective Footprint in Estimations of Leaf Area Density from Multiview-LiDAR Data. Remote Sens. 2019, 11, 1580. [Google Scholar] [CrossRef] [Green Version]
- Hosoi, F.; Umeyama, S.; Kuo, K. Estimating 3D Chlorophyll Content Distribution of Trees Using an Image Fusion Method Between 2D Camera and 3D Portable Scanning Lidar. Remote Sens. 2019, 11, 2134. [Google Scholar] [CrossRef] [Green Version]
- Kuo, K.; Itakura, K.; Hosoi, F. Leaf Segmentation Based on k-Means Algorithm to Obtain Leaf Angle Distribution Using Terrestrial LiDAR. Remote Sens. 2019, 11, 2536. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A. Using Tree Detection Based on Airborne Laser Scanning to Improve Forest Inventory Considering Edge Effects and the Co-Registration Factor. Remote Sens. 2019, 11, 2675. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, J.; Tulldahl, M.; Nordlöf, J.; Willén, E.; Olsson, H. Mobile Laser Scanning for Estimating Tree Stem Diameter Using Segmentation and Tree Spine Calibration. Remote Sens. 2019, 11, 2781. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, D.N.; Soares, P.; Guerra-Hernández, J.; Pereira, L.; González-Ferreiro, E.; Castedo-Dorado, F.; Tomé, M. Comparing Johnson’s SB and Weibull Functions to Model the Diameter Distribution of Forest Plantations through ALS Data. Remote Sens. 2019, 11, 2792. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Guerra-Hernández, J.; Cosenza, D.N.; Sandoval, V. The Role of Improved Ground Positioning and Forest Structural Complexity When Performing Forest Inventory Using Airborne Laser Scanning. Remote Sens. 2020, 12, 413. [Google Scholar] [CrossRef] [Green Version]
- Duanmu, J.; Xing, Y. Annular Neighboring Points Distribution Analysis: A Novel PLS Stem Point Cloud Preprocessing Algorithm for DBH Estimation. Remote Sens. 2020, 12, 808. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Zheng, G.; Chen, Y. An Improved Convolution Neural Network-Based Model for Classifying Foliage and Woody Components from Terrestrial Laser Scanning Data. Remote Sens. 2020, 12, 1010. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Pang, Y.; Wang, D.; Liang, X.; Chen, B.; Lu, H.; Weinacker, H.; Koch, B. Individual Tree Crown Segmentation of a Larch Plantation Using Airborne Laser Scanning Data Based on Region Growing and Canopy Morphology Features. Remote Sens. 2020, 12, 1078. [Google Scholar] [CrossRef] [Green Version]
- Windrim, L.; Bryson, M. Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning. Remote Sens. 2020, 12, 1469. [Google Scholar] [CrossRef]
- Gollob, C.; Ritter, T.; Nothdurft, A. Forest Inventory with Long Range and High-Speed Personal Laser Scanning (PLS) and Simultaneous Localization and Mapping (SLAM) Technology. Remote Sens. 2020, 12, 1509. [Google Scholar] [CrossRef]
- Leite, R.V.; Amaral, C.H.d.; Pires, R.d.P.; Silva, C.A.; Soares, C.P.B.; Macedo, R.P.; Lopes Da Silva, A.A.; Broadbent, E.N.; Mohan, M.; Leite, H.G. Estimating Stem Volume in Eucalyptus Plantations Using Airborne LiDAR: A Comparison of Area- and Individual Tree-Based Approaches. Remote Sens. 2020, 12, 1513. [Google Scholar] [CrossRef]
- Gajardo, J.; Riaño, D.; García, M.; Salas, J.; Martín, M.P. Estimation of Canopy Gap Fraction from Terrestrial Laser Scanner Using an Angular Grid to Take Advantage of the Full Data Spatial Resolution. Remote Sens. 2020, 12, 1596. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Chen, F.; Dong, Y.; Wang, Z.; Li, H.; Chen, D. A New Quantitative Approach to Tree Attributes Estimation Based on LiDAR Point Clouds. Remote Sens. 2020, 12, 1779. [Google Scholar] [CrossRef]
- Zhu, Z.; Kleinn, C.; Nölke, N. Towards Tree Green Crown Volume: A Methodological Approach Using Terrestrial Laser Scanning. Remote Sens. 2020, 12, 1841. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, G.; Moskal, L.M. Stratifying Forest Overstory for Improving Effective LAI Estimation Based on Aerial Imagery and Discrete Laser Scanning Data. Remote Sens. 2020, 12, 2126. [Google Scholar] [CrossRef]
- Santopuoli, G.; Di Febbraro, M.; Maesano, M.; Balsi, M.; Marchetti, M.; Lasserre, B. Machine Learning Algorithms to Predict Tree-Related Microhabitats using Airborne Laser Scanning. Remote Sens. 2020, 12, 2142. [Google Scholar] [CrossRef]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T.; Morimoto, J. Application of UAV Photogrammetry with LiDAR Data to Facilitate the Estimation of Tree Locations and DBH Values for High-Value Timber Species in Northern Japanese Mixed-Wood Forests. Remote Sens. 2020, 12, 2865. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A New Method for Estimating Above-Ground Biomass from TLS Point Clouds. Remote Sens. 2020, 12, 3089. [Google Scholar] [CrossRef]
- Almeida, A.; Gonçalves, F.; Silva, G.; Souza, R.; Treuhaft, R.; Santos, W.; Loureiro, D.; Fernandes, M. Estimating Structure and Biomass of a Secondary Atlantic Forest in Brazil Using Fourier Transforms of Vertical Profiles Derived from UAV Photogrammetry Point Clouds. Remote Sens. 2020, 12, 3560. [Google Scholar] [CrossRef]
- Alonso-Rego, C.; Arellano-Pérez, S.; Cabo, C.; Ordoñez, C.; Álvarez-González, J.G.; Díaz-Varela, R.A.; Ruiz-González, A.D. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sens. 2020, 12, 3704. [Google Scholar] [CrossRef]
- Lamprecht, S.; Stoffels, J.; Udelhoven, T. ALS as Tool to Study Preferred Stem Inclination Directions. Remote Sens. 2020, 12, 3744. [Google Scholar] [CrossRef]
- Nevalainen, P.; Li, Q.; Melkas, T.; Riekki, K.; Westerlund, T.; Heikkonen, J. Navigation and Mapping in Forest Environment Using Sparse Point Clouds. Remote Sens. 2020, 12, 4088. [Google Scholar] [CrossRef]
- Hui, Z.; Jin, S.; Li, D.; Ziggah, Y.Y.; Liu, B. Individual Tree Extraction from Terrestrial LiDAR Point Clouds Based on Transfer Learning and Gaussian Mixture Model Separation. Remote Sens. 2021, 13, 223. [Google Scholar] [CrossRef]
- Latella, M.; Sola, F.; Camporeale, C. A Density-Based Algorithm for the Detection of Individual Trees from LiDAR Data. Remote Sens. 2021, 13, 322. [Google Scholar] [CrossRef]
- Buján, S.; Guerra-Hernández, J.; González-Ferreiro, E.; Miranda, D. Forest Road Detection Using LiDAR Data and Hybrid Classification. Remote Sens. 2021, 13, 393. [Google Scholar] [CrossRef]
- Przewoźna, P.; Hawryło, P.; Zięba-Kulawik, K.; Inglot, A.; Mączka, K.; Wężyk, P.; Matczak, P. Use of Bi-Temporal ALS Point Clouds for Tree Removal Detection on Private Property in Racibórz, Poland. Remote Sens. 2021, 13, 767. [Google Scholar] [CrossRef]
- Tian, S.; Zheng, G.; Eitel, J.U.; Zhang, Q. A Lidar-Based 3-D Photosynthetically Active Radiation Model Reveals the Spatiotemporal Variations of Forest Sunlit and Shaded Leaves. Remote Sens. 2021, 13, 1002. [Google Scholar] [CrossRef]
- Pérez-Cruzado, C.; Kleinn, C.; Magdon, P.; Álvarez-González, J.G.; Magnussen, S.; Fehrmann, L.; Nölke, N. The Horizontal Distribution of Branch Biomass in European Beech: A Model Based on Measurements and TLS Based Proxies. Remote Sens. 2021, 13, 1041. [Google Scholar] [CrossRef]
- Special Issue. 3D Point Clouds in Forest Remote Sensing: Part II. Available online: https://www.mdpi.com/journal/remotesensing/special_issues/3D_Point_Clouds_Forest_Remote_Sensing_Part_II (accessed on 27 June 2021).
- Special Issue. 3D Point Clouds in Forest. Available online: https://www.mdpi.com/journal/remotesensing/special_issues/3D_forest (accessed on 27 June 2021).
- Google Analytics. Available online: https://analytics.google.com/ (accessed on 1 June 2021).
Article | Study Area (Country) 1 | RS Data 2 | Scale 3 | Variable of Interest 4 | Methods 5 |
---|---|---|---|---|---|
Pimont et al., 2019 [1] | SD | TLS, UAVL | ITL | LAD | MLE, VBM |
Hosoi et al., 2019 [2] | Japan | TLS, MuC, ThC | ITL | ChL | VI, data fusion, 3D reconstruction |
Kuo et al., 2019 [3] | Japan | TLS | ITL | LADi | 3D reconstruction, segmentation, k-means algorithm |
Pascual 2019 [4] | Spain | ALS | ITL/SL | V, BA, Ho | ABA, ITD, EABA, edge-correction |
Holmgren et al., 2019 [5] | Sweden | MLS | ITL/SL | tTee position, stem diameters, BA, BA-weighted mean DBH | Segmentation, calibration, PCA |
Nepomuceno Cosenza et al., 2019 [6] | Spain | ALS | SL | Diameter distributions | ABA, PDF modelling |
Pascual et al., 2020 [7] | Spain | ALS | SL | V, BA, Ho | ABA, model transferability, data co-registration |
Duanmu and Xing 2020 [8] | China | MLS | ITL | DBH | 3D reconstruction, ANPDA, point-distribution analysis |
Wu et al., 2020 [9] | China | TLS | ITL | FWC | Deep-learning, CNN, hyper-parameter optimization, intensity calibration |
Ma et al., 2020 [10] | China | ALS | ITL | Crown shape, tree position | Region growing, morphology segmentation, 2D hull convex area, correlation, Gaussian fitting, k-means segmentation |
Windrim and Bryson 2020 [11] | Australia | ALS | ITL | Tree position, cw, h, v | Deep-learning, segmentation, 3D reconstruction, R-CNN, 3D-CNN, VBM, RANSAC |
Gollob et al., 2020 [12] | Austria | MLS, TLS | ITL | Tree position, DBH | Comparison, density-based clustering, co-registration, 3D reconstruction |
Vieira Leite et al., 2020 [13] | Brazil | ALS | ITL/SL | V, v | Comparison, ABA, ITD, ANN, RF, SVM, statistical modelling |
Gajardo et al., 2020 [14] | Spain | TLS, SHI | ITL | CGF | Comparison, VBM, 3D reconstruction |
Fan et al., 2020 [15] | China | TLS | ITL | FWC, v, h, DBH | 3D reconstruction |
Zhu et al., 2020 [16] | Germany | TLS | ITL | FWC | CANUPO classification, k-means clustering |
Xu et al., 2020 [17] | United States | ALS, HyC, DHC, TLS | SL | LAI | CSF, region growing, tree segmentation, histogram-based forest overstorey stratification, SACA, statistical modelling, VI |
Santopuoli et al., 2020 [18] | Italy | ALS | SL | TreeMh | RF |
Thu Moe et al., 2020 [19] | Japan | ALS, DP | ITL | Tree species, h, DBH | OBIA, RF |
Fan et al., 2020 [20] | Indonesia, Peru, Guiana | TLS | ITL | DBH, v, h, FWC, AGB | 3D reconstruction |
Almeida et al., 2020 [21] | Brazil | DP | SL | AGB, TD, BA, DBH, h | Fourier transform, statistical modelling |
Alonso-Rego et al., 2020 [22] | Spain | TLS | SL | Shrub fuel load | Statistical modelling |
Lamprecht et al., 2020 [23] | Germany | ALS | ITL | Tree position, tree stem delineation | Point filtering, statistical modelling |
Nevalainen et al., 2020 [24] | Finland | TLS | ITL | Tree position | Simultaneous location and mapping using GO-LOAM and Go-ICP algorithms |
Hui et al., 2021 [25] | Finland | TLS | ITL | Tree position, tree stem delineation | Transfer learning, PCA, kernel density estimation Gaussian mixture model separation |
Latella et al., 2021 [26] | Italy | ALS | ITL | Tree position, h | Local point density maxima, Fourier transform, Point filtering |
Bujan et al., 2021 [27] | Spain | ALS | SL | Land cover classification | Point filtering, OBIA, Decision tree classification, RF |
Przewozna et al., 2021 [28] | Poland | ALS, OPM | ITL, SL | Tree position, crown delineation, tree cover | Point filtering, OBIA, segmentation, Decision tree classification |
Tian et al., 2021 [29] | China | TLS, UAVL | SL | Sunlit/Shaded leaves, 3D forest PAR mapping | Statistical modelling, Point filtering |
Perez-Cruzado et al., 2021 [30] | Germany | TLS | ITL | HDB | Statistical modelling, SHC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Varela, R.A.; González-Ferreiro, E. 3D Point Clouds in Forest Remote Sensing. Remote Sens. 2021, 13, 2999. https://doi.org/10.3390/rs13152999
Díaz-Varela RA, González-Ferreiro E. 3D Point Clouds in Forest Remote Sensing. Remote Sensing. 2021; 13(15):2999. https://doi.org/10.3390/rs13152999
Chicago/Turabian StyleDíaz-Varela, Ramón Alberto, and Eduardo González-Ferreiro. 2021. "3D Point Clouds in Forest Remote Sensing" Remote Sensing 13, no. 15: 2999. https://doi.org/10.3390/rs13152999
APA StyleDíaz-Varela, R. A., & González-Ferreiro, E. (2021). 3D Point Clouds in Forest Remote Sensing. Remote Sensing, 13(15), 2999. https://doi.org/10.3390/rs13152999