Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. GPS Data
2.2.2. Aerial Imagery-Derived Shoreline Data
2.2.3. WorldView-Derived Shoreline Data
2.3. Data Analysis
2.3.1. WorldView-Derived Shoreline Accuracy
2.3.2. Shoreline Change Comparisons
3. Results
3.1. WVS and GPSS Comparisons
3.2. Shoreline Change Analyses
4. Discussion
5. Conclusions
- A simple procedure to auto-delineate wetland shorelines from WorldView imagery was performed and, compared with field-survey data, resulted in an accuracy of approximately 2 m, but ranged from 0 to 20 m. Shorelines with gradual nearshore slope and sparse shoreline vegetation (bare mud or beach) may reduce boundary distinction and introduce positional error.
- Shoreline change analyses calculated exclusively from wetland shorelines extracted from WorldView imagery were strongly correlated to shoreline change calculations from field-based data (R2 = 0.89, p-value < 0.001) indicating that these satellite-derived shorelines can provide an adequate assessment of short-term shoreline change by extending the applicability of field-based surveys to much larger areas. The timing of image collection and water level are important considerations when selecting imagery. Further characterization of the impact of these considerations on wetland shoreline position could improve future analyses and methodology.
- Improvement of the auto-delineation of mixed shoreline types (wetland, sandy beaches, rocky cliffs, etc.) that are common in estuaries or evaluate the effectiveness of the transect-based shoreline change analyses and other methodologies on wetland and estuarine shorelines is possible, particularly using other methodologies, such as fuzzy boundaries or pixel-based analyses, may have greater success for gradual or indistinct boundaries commonly found in coastal wetlands and estuaries.
- Shorelines derived from high-resolution (meter-scale spatial resolution) satellite data with superior spatiotemporal coverage can provide a valuable data source to managers for frequent (e.g., annually) and consistent broad-scale monitoring of coastal wetlands or after extreme erosion events.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Ennis, B.; Peterson, M.S.; Strange, T.P. Modeling of inundation characteristics of a microtidal saltmarsh, Grand Bay National Estuarine Research Reserve, Mississippi. J. Coast. Res. 2014, 30, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Ravens, T.M.; Thomas, R.C.; Roberts, K.A.; Santschi, P.H. Causes of salt marsh erosion in Galveston Bay, Texas. J. Coast. Res. 2009, 2009, 265–272. [Google Scholar] [CrossRef]
- Marani, M.; d’Alpaos, A.; Lanzoni, S.; Santalucia, M. Understanding and predicting wave erosion of marsh edges. Geophys. Res. Lett. 2011, 38, L21401. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Influence of tidal range on the stability of coastal marshland. J. Geophys. Res. 2010, 115, F02009. [Google Scholar] [CrossRef]
- Leonardi, N.; Ganju, N.K.; Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl. Acad. Sci. USA 2016, 113, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Bilkovic, D.M.; Mitchell, M.M.; Davis, J.; Herman, J.; Andrews, E.; King, A.; Mason, P.; Tahvildari, N.; Davis, J.; Dixon, R.L. Defining boat wake impacts on shoreline stability toward management and policy solutions. Ocean. Coast. Manag. 2019, 182, 104945. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Ward, L.G.; Kearney, M.S. Vertical accretion in marshes with varying rates of sea level rise. In Estuarine Variability; Wolfe, D.A., Ed.; Academic Press: Cambridge, MA, USA, 1986; pp. 241–259. [Google Scholar]
- Leonardi, N.; Fagherazzi, S. How waves shape salt marshes. Geology 2014, 42, 887–890. [Google Scholar] [CrossRef]
- Day, J.W.; Christian, R.R.; Boesch, D.M.; Yáñez-Arancibia, A.; Morris, J.; Twilley, R.R.; Naylor, L.; Schaffner, L.; Stevenson, C. Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries Coasts 2008, 31, 477–491. [Google Scholar] [CrossRef]
- Scavia, D.; Field, J.C.; Boesch, D.F.; Buddemeier, R.W.; Burkett, V.; Cayan, D.R.; Fogarty, M.; Harwell, M.A.; Howarth, R.W.; Mason, C.; et al. Climate change impacts on US coastal and marine ecosystems. Estuaries 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Wigand, C.; Ardito, T.; Chaffee, C.; Ferguson, W.; Paton, S.; Raposa, K.; Vandemoer, C.; Watson, E. A climate change adaptation strategy for management of coastal marsh systems. Estuaries Coasts 2017, 40, 682–693. [Google Scholar] [CrossRef]
- Dolan, R.; Michael, S.F.; Stuart, J.H. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- Plant, N.G.; Robert Thieler, E.; Passeri, D.L. Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network. Earth’s Future 2016, 4, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Pendleton, E.A.; Barras, J.A.; Williams, S.J.; Twichell, D.C. Coastal Vulnerability Assessment of the Northern Gulf of Mexico to Sea-Level Rise and Coastal Change; USGS: Reston, VA, USA, 2010; p. 26.
- Thieler, E.R.; Danforth, W.W. Historical shoreline mapping (II): Application of the digital shoreline mapping and analysis systems (DSMS/DSAS) to shoreline change mapping in Puerto Rico. J. Coast. Res. 1994, 10, 600–620. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Shalowitz, A.L. Shore and Sea Boundaries: With Special Reference to the Interpretation and Use of Coast. and Geodetic Survey Data; US Department of Commerce: Washington, DC, USA, 1964; Volume 2.
- Ellis, M.Y. Coastal Mapping Handbook; US Government Printing Office: Washington, DC, USA, 1978.
- Parrish, C.E. Shoreline mapping. In Advances in Mapping from Remote Sensor Imagery: Techniques and Applications; Yang, X., Li, J., Eds.; CRC Press: Boca Ratom, FL, USA, 2013; pp. 145–168. [Google Scholar]
- Liu, H. Shoreline mapping and coastal change studies using remote sensing imagery and LIDAR data. In Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management; Springer: Berlin/Heidelberg, Germany, 2009; pp. 297–322. [Google Scholar]
- Stockdon, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of shoreline position and change using airborne topographic Lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Farris, A.S.; Defne, Z.; Ganju, N.K. Identifying salt marsh shorelines from remotely sensed elevation data and imagery. Remote Sens. 2019, 11, 1795. [Google Scholar] [CrossRef] [Green Version]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR-derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Montané, J.M.; Torres, R. Accuracy assessment of lidar saltmarsh topographic data using RTK GPS. Photogramm. Eng. Remote Sens. 2006, 72, 961–967. [Google Scholar] [CrossRef]
- Schmid, K.A.; Hadley, B.C.; Wijekoon, N. Vertical accuracy and use of topographic LIDAR data in coastal marshes. J. Coast. Res. 2011, 27, 116–132. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Vanderbilt, B.C.; Ramezan, C.A. Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) Orthoimagery: A review. Photogramm. Eng. Remote Sens. 2017, 83, 737–747. [Google Scholar] [CrossRef]
- Moore, L.J. Shoreline mapping techniques. J. Coast. Res. 2000, 16, 111–124. [Google Scholar]
- Burningham, H.; Fernandez-Nunez, M. Shoreline change analysis. In Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 439–460. [Google Scholar]
- Chen, W.-W.; Chang, H.-K. Estimation of shoreline position and change from satellite images considering tidal variation. Estuar. Coast. Shelf Sci. 2009, 84, 54–60. [Google Scholar] [CrossRef]
- Kuleli, T.; Guneroglu, A.; Karsli, F.; Dihkan, M. Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean. Eng. 2011, 38, 1141–1149. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline detection using optical remote sensing: A review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Minghelli, A.; Spagnoli, J.; Lei, M.; Chami, M.; Charmasson, S. Shoreline extraction from WorldView2 satellite data in the presence of foam pixels using multispectral classification method. Remote Sens. 2020, 12, 2664. [Google Scholar] [CrossRef]
- García-Rubio, G.; Huntley, D.; Russell, P. Evaluating shoreline identification using optical satellite images. Mar. Geol. 2015, 359, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Maglione, P.; Parente, C.; Vallario, A. Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 2014, 47, 685–699. [Google Scholar] [CrossRef]
- Mills, K.; Kennish, M.J.; Moore, K.A. Research and monitoring components of the National Estuarine Research Reserve System. J. Coast. Res. 2008, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Grand Bay National Estuarine Research Reserve. Grand Bay National Estuarine Research Reserve Management Plan. 2013–2018; Grand Bay National Estuarine Research Reserve, Mississippi Department of Marine Resources: Moss Point, MI, USA, 2013; p. 104. [Google Scholar]
- Peterson, M.S.; Waggy, G.L.; Woodrey, M.S. Grand Bay National Estuarine Research Reserve: An Ecological Characterization; Grand Bay National Estuarine Research Reserve: Jackson, MI, USA, 2007; p. 280. [Google Scholar]
- Walker, H.J.; Coleman, J.M.; Roberts, H.H.; Tye, R.S. Wetland Loss in Louisiana. Geogr. Ann. 1987, 69, 189–200. [Google Scholar] [CrossRef]
- Rangoonwala, A.; Jones, C.E.; Ramsey Iii, E. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms. Geophys. Res. Lett. 2016, 43, 11–652. [Google Scholar] [CrossRef] [Green Version]
- Terrano, J. An Evaluation of Marsh Shoreline Erosion and Sediment Deposition in the Grand Bay National Estuarine Research Reserve, Mississippi, USA; University of South Florida: Tampa, FL, USA, 2018. [Google Scholar]
- National Oceanic and Atmospheric Administration. NOAA Tides and Currents Sea Level Trends: Dauphin Island, AL—Station ID: 8735180. Available online: https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=8735180 (accessed on 9 May 2021).
- Trimble. Trimble R8 GNSS Receiver Datasheet. Available online: http://www.inlandgps.com/Products/R8M3%20Datasheet%20200911.pdf (accessed on 16 February 2021).
- Trimble. Trimble R10 GNSS Receiver Datasheet. Available online: https://geospatial.trimble.com/sites/geospatial.trimble.com/files/2019-04/022516-332A_TrimbleR10-2_DS_USL_0419_LR.pdf (accessed on 16 February 2021).
- Esri Inc. ArcGIS Desktop; Version 10.7.1; Esri Inc.: Redlands, CA, USA, 2019. [Google Scholar]
- Bonham, C.D. Measurements for Terrestrial Vegetation; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Terrano, J.F.; Smith, K.E.L.; Pitchford, J.P.; Archer, M.J.; Brochard, M. Shorelines from High-Resolution WorldView Satellite Imagery, Real-Time Kinematic Global Positioning Data, and Aerial Imagery for 2013 to 2020 for Study Sites within Grand Bay National Estuarine Research Reserve, Mississippi; Grand Bay National Estuarine Research Reserve: Jackson, MI, USA, 2021. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Mehring, J.L.; McBride, E.F. Origin of modern quartzarenite beach sands in a temperate climate, Florida and Alabama, USA. Sediment. Geol. 2007, 201, 432–445. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.0.5; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Jackson, C.W., Jr. AMBUR Package for R Basic User Guide (Windows); R-Forge: Savannah, GA, USA, 2010. [Google Scholar]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Walker, A.; Turner, I.L. Beach slopes from satellite-derived shorelines. Geophys. Res. Lett. 2020, 47, e2020GL088365. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Int. J. Nurs. Stud. 2010, 47, 931–936. [Google Scholar] [CrossRef]
- Bangdiwala, S.I.; Shankar, V. The agreement chart. BMC Med. Res. Methodol. 2013, 13, 97. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Measurement in medicine: The analysis of method comparison studies. J. R. Stat. Soc. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Nowacki, D.J.; Ganju, N.K. Sediment dynamics of a divergent bay-marsh complex. Estuaries Coasts 2020, 44, 1216–1230. [Google Scholar] [CrossRef]
- Byrnes, M.R.; McBride, R.A.; Penland, S.; Hiland, M.W.; Westphal, K.A. Historical changes in shoreline position along the Mississippi sound barrier islands. In Proceedings of the Coastal Depositional Systems in the Gulf of Mexico: Quaternary Framework and Environmental Issues—Twelfth Annual Research Conference, Gulf Coast Section, SEPM, Houston, TX, USA, 8–11 December 1991; pp. 43–55. [Google Scholar]
- Cowart, L.; Walsh, J.; Corbett, D.R. Analyzing estuarine shoreline change: A case study of Cedar Island, North Carolina. J. Coast. Res. 2010, 26, 817–830. [Google Scholar] [CrossRef]
- Leatherman, S.P. Shoreline Change Mapping and Management Along the U.S. East Coast. J. Coast. Res. 2003, 38, 5–13. [Google Scholar]
- Miller, T.L.; Morton, R.A.; Sallenger, A.H., Jr.; Moore, L.J. National Assessment of Shoreline Change; A GIS Compilation of Vector Shorelines and Associated Shoreline Change Data for the U.S. Gulf of Mexico; Open-File Report 2004-1089; U.S. Geological Survey: Reston, VA, USA, 2004.
- Morton, R.A.; Miller, T.; Moore, L. Historical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analyses. J. Coast. Res. 2005, 21, 704–709. [Google Scholar] [CrossRef]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Gulf of Mexico Coast; Open-File Report 00-179; U.S. Geological Survey: Woods Hole, MA, USA, 2000.
- Price, F.D. Quantification, Analysis, and Management of Intracoastal Waterway Channel Margin Erosion in the Guana Tolomato Matanzas National Estuarine Research Reserve, Florida; Florida State University: Tallahassee, FI, USA, 2005. [Google Scholar]
- Wang, F.; Hall, G.B. Fuzzy representation of geographical boundaries in GIS. Int. J. Geogr. Inf. Syst. 1996, 10, 573–590. [Google Scholar] [CrossRef]
- Choung, Y.-J.; Jo, M.-H. Comparison between a Machine-Learning-Based Method and a Water-Index-Based Method for Shoreline Mapping Using a High-Resolution Satellite Image Acquired in Hwado Island, South Korea. J. Sens. 2017, 2017, 8245204. [Google Scholar] [CrossRef] [Green Version]
- Manaf, S.A.; Mustapha, N.; Sulaiman, M.N.; Husin, N.A.; Hamid, M.R.A. Artificial Neural Networks for Satellite Image Classification of Shoreline Extraction for Land and Water Classes of the North West Coast of Peninsular Malaysia. Adv. Sci. Lett. 2018, 24, 1382–1387. [Google Scholar] [CrossRef]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. machine-learning methods for forecasting sandy shoreline evolution using historic satellite-derived shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Allen, Y.C.; Couvillion, B.R.; Barras, J.A. Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuaries Coasts 2012, 35, 190–200. [Google Scholar] [CrossRef]
Site 1 | X Coordinate 2 | Y Coordinate 2 | Species Present 3 | Scarp Height (m) | Marsh Slope | Nearshore Slope | Marsh Elevation (m) | Shoreline Sediment Type 4 |
---|---|---|---|---|---|---|---|---|
BHM | 365771.947 | 3361950.554 | SA, JR | 0.26 ± 0.07 | 0.05 ± 0.02 | 0.2 ± 0.05 | 0.25 ± 0.02 | M |
MBN | 364948.644 | 3362581.497 | SA, JR | 0.29 ± 0.02 | 0.04 ± 0.01 | 0.16 ± 0.01 | 0.28 ± 0.02 | M |
MBW | 364397.654 | 3361443.661 | SA, JR | 0.44 ± 0.03 | 0.04 ± 0.01 | 0.13 ± 0.02 | 0.23 ± 0.02 | M |
MBS | 365652.416 | 3360740.168 | SA | 0.32 ± 0.12 | 0.02 ± 0.01 | 0.15 ± 0.04 | 0.36 ± 0.03 | M |
GBE | 366084.354 | 3358576.051 | SA, SP, BF | 0.15 ± 0.03 | 0.08 ± 0.02 | 0.15 ± 0.06 | 0.49 ± 0.06 | Ss, M |
BSI | 364642.111 | 3357926.278 | SA, SP | 0.15 ± 0.05 | 0.12 ± 0.03 | 0.08 ± 0.03 | 0.46 ± 0.05 | Ms, Ss |
SPAL | 363916.729 | 3359351.988 | SA, JR | 0.54 ± 0.04 | 0.05 ± 0.01 | 0.11 ± 0.04 | 0.34 ± 0.02 | M |
MET | 363621.959 | 3358939.945 | SA | 0.32 ± 0.04 | 0.07 ± 0.04 | 0.17 ± 0.05 | 0.33 ± 0.02 | Ms |
PACN | 361468.093 | 3359292.170 | SA | 0.27 ± 0.02 | 0.01 ± 0.01 | 0.25 ± 0.08 | 0.5 ± 0.01 | M |
PACM | 360722.683 | 3356944.082 | SA, SP | 0.16 ± 0.03 | 0.01 ± 0.01 | 0.11 ± 0.1 | 0.49 ± 0.02 | M, S |
PACS | 359405.655 | 3355908.173 | SA | 0.18 ± 0.05 | 0.08 ± 0.02 | 0.24 ± 0.19 | 0.46 ± 0.05 | S |
Year | WorldView Date | GPS Date | NAIP Date |
---|---|---|---|
2013 | 17 December 2013 | 19 September 2013 | |
2014 | 14 November 2014 | 17 November 2014 | 15 October 2014 |
2015 | 3 May 2015 | 11 June 2015 | |
2016 | 2 July 2016 | 12 May 2016 | 24 June 2016 |
2017 | 14 May 2017 | 1 May 2017 | |
9 August 2017 | 14 August 2017 | ||
30 December 2017 | 8 November 2017 | ||
2018 | 23 June 2018 | 9 May 2018 | |
10 December 2018 | 4 December 2018 | ||
2019 | 16 November 2019 | 19 June 2019 | 16 November 2019 |
2020 | 17 November 2020 | 13 November 2020 | 16 June 2020 |
Points | Transects | |||||
---|---|---|---|---|---|---|
Site | N | Δx | N | Δx | Δxt | Δxtw |
BHM | 396 | 1.66 ± 0.15 | 177 | 1.79 ± 0.3 | 1.68 ± 0.3 | 1.53 ± 0.3 |
BSI | 555 | 3.82 ± 0.36 | 278 | 1.27 ± 0.13 | 1.18 ± 0.13 | 0.93 ± 0.11 |
GBE | 777 | 3.22 ± 0.22 | 321 | 5.22 ± 0.59 | 4.81 ± 0.58 | 4.75 ± 0.58 |
MBN | 332 | 1.43 ± 0.11 | 91 | 6.69 ± 1.34 | 6.08 ± 1.39 | 5.96 ± 1.36 |
MBS | 323 | 0.93 ± 0.09 | 99 | 4.1 ± 0.72 | 3.9 ± 0.69 | 3.83 ± 0.68 |
MBW | 311 | 1.17 ± 0.08 | 103 | 6.07 ± 1.28 | 5.55 ± 1.28 | 5.46 ± 1.25 |
MET | 529 | 1.26 ± 0.13 | 130 | 1.57 ± 0.43 | 1.43 ± 0.44 | 1.38 ± 0.44 |
PACM | 252 | 1.23 ± 0.19 | 88 | 4.08 ± 1.08 | 4.03 ± 1.08 | 3.93 ± 1.07 |
PACN | 497 | 0.92 ± 0.07 | 122 | 2.74 ± 0.62 | 2.65 ± 0.62 | 2.52 ± 0.6 |
PACS | 264 | 4.71 ± 0.52 | 91 | 0.96 ± 0.13 | 0.91 ± 0.14 | 0.72 ± 0.12 |
SPAL | 372 | 0.7 ± 0.06 | 137 | 1.79 ± 0.44 | 1.63 ± 0.41 | 1.64 ± 0.41 |
Points | Transects | |||||
---|---|---|---|---|---|---|
Year | N | Δx | N | Δx | Δxt | Δxtw |
2013 | 486 | 2.54 ± 0.26 | 115 | 2.83 ± 0.77 | 2.6 ± 0.76 | 2.39 ± 0.73 |
2014 | 585 | 1.4 ± 0.18 | 161 | 3.85 ± 0.76 | 3.62 ± 0.75 | 3.54 ± 0.74 |
2015 | 452 | 1.43 ± 0.11 | 139 | 3.17 ± 0.8 | 2.93 ± 0.79 | 2.63 ± 0.75 |
2016 | 284 | 1.44 ± 0.22 | 105 | 3.21 ± 0.81 | 3.02 ± 0.8 | 2.67 ± 0.77 |
2017 | 515 | 2.38 ± 0.28 | 189 | 3.58 ± 0.7 | 3.33 ± 0.69 | 3.09 ± 0.67 |
2017 | 503 | 3.16 ± 0.34 | 205 | 3.08 ± 0.56 | 2.9 ± 0.55 | 2.77 ± 0.51 |
2017 | 618 | 1.52 ± 0.15 | 226 | 2.75 ± 0.54 | 2.52 ± 0.53 | 2.45 ± 0.5 |
2018 | 194 | 1.33 ± 0.23 | 78 | 2.46 ± 0.67 | 2.22 ± 0.62 | 2.07 ± 0.62 |
2019 | 253 | 2.21 ± 0.21 | 118 | 3.48 ± 0.91 | 3.21 ± 0.89 | 3.07 ± 0.85 |
2020 | 718 | 2.34 ± 0.24 | 301 | 3.18 ± 0.46 | 2.98 ± 0.45 | 2.8 ± 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, K.E.L.; Terrano, J.F.; Pitchford, J.L.; Archer, M.J. Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys. Remote Sens. 2021, 13, 3030. https://doi.org/10.3390/rs13153030
Smith KEL, Terrano JF, Pitchford JL, Archer MJ. Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys. Remote Sensing. 2021; 13(15):3030. https://doi.org/10.3390/rs13153030
Chicago/Turabian StyleSmith, Kathryn E. L., Joseph F. Terrano, Jonathan L. Pitchford, and Michael J. Archer. 2021. "Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys" Remote Sensing 13, no. 15: 3030. https://doi.org/10.3390/rs13153030
APA StyleSmith, K. E. L., Terrano, J. F., Pitchford, J. L., & Archer, M. J. (2021). Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys. Remote Sensing, 13(15), 3030. https://doi.org/10.3390/rs13153030