Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAV Flight Planning and Surveying
2.3. Georeferencing and Data Accuracy: Field Survey
2.4. Data Processing
2.5. Quality Evaluation
2.6. Detection of Discontinuities
3. Results
3.1. Point Cloud and Derived Product Features
3.2. Quality Assessment of Point Clouds
3.3. Extraction of Discontinuities
4. Discussion
4.1. Evaluation of Data Quality: Implications of Flight Altitude Mode and Camera Angle
4.2. Control/Check Point Survey in Highwalls
4.3. Use of Detailed Topographies in Monitoring Mining Highwalls
4.4. Improved SfM-UAV Workflow to Survey Long Highwalls
- measuring control/check points with a robotic total station based on natural shapes;
- conducting a drone flight programmed with a computer-based mission planning software with the following settings: facade flight mode, double grid with at least 75% forward/side overlap, a nadir camera angle (perpendicular to the highwall), and a constant 40 m highwall distance;
- processing control/check points and drone images in an SfM software. Since the final aim is to detect discontinuities prone to falls, high detail is required, setting the parameters “accuracy” (alignment step) and “quality” (dense point cloud step), as “Highest” and “Ultra High”, respectively. This allows taking advantage of 100% of image quality; and
- using a semiautomatic discontinuity extraction software and supervising the results with visual inspection of the drone images or the orthophoto obtained after running SfM software.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mossa, J.; James, L.A. 13.6 Impacts of mining on geomorphic systems. In Treatise on Geomorphology; Shroder, J.F., Ed.; Academic Press: San Diego, CA, USA, 2013; pp. 74–95. ISBN 9780080885223. [Google Scholar]
- Chen, J.; Li, K.; Chang, K.-J.; Sofia, G.; Tarolli, P. Open-Pit Mining Geomorphic Feature Characterisation. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 76–86. [Google Scholar] [CrossRef]
- Zapico, I.; Martín Duque, J.F.; Bugosh, N.; Laronne, J.B.; Ortega, A.; Molina, A.; Martín-Moreno, C.; Nicolau, J.M.; Sánchez Castillo, L. Geomorphic Reclamation for Reestablishment of Landform Stability at a Watershed Scale in Mined Sites: The Alto Tajo Natural Park, Spain. Ecol. Eng. 2018, 111, 100–116. [Google Scholar] [CrossRef]
- Carabassa, V.; Montero, P.; Crespo, M.; Padró, J.-C.; Pons, X.; Balagué, J.; Brotons, L.; Alcañiz, J.M. Unmanned Aerial System Protocol for Quarry Restoration and Mineral Extraction Monitoring. J. Environ. Manag. 2020, 270, 110717. [Google Scholar] [CrossRef]
- Zapico, I.; Molina, A.; Laronne, J.B.; Sánchez Castillo, L.; Martín Duque, J.F. Stabilization by Geomorphic Reclamation of a Rotational Landslide in an Abandoned Mine next to the Alto Tajo Natural Park. Eng. Geol. 2020, 264, 105321. [Google Scholar] [CrossRef]
- Giordan, D.; Adams, M.S.; Aicardi, I.; Alicandro, M.; Allasia, P.; Baldo, M.; de Berardinis, P.; Dominici, D.; Godone, D.; Hobbs, P.; et al. The Use of Unmanned Aerial Vehicles (UAVs) for Engineering Geology Applications. Bull. Eng. Geol. Environ. 2020, 79, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Eltner, A.; Sofia, G. Structure from Motion Photogrammetric Technique. Dev. Earth Surf. Process. 2020, 23, 1–24. [Google Scholar] [CrossRef]
- Xu, Q.; Li, W.; Ju, Y.; Dong, X.; Peng, D. Multitemporal UAV-Based Photogrammetry for Landslide Detection and Monitoring in a Large Area: A Case Study in the Heifangtai Terrace in the Loess Plateau of China. J. Mt. Sci. 2020, 17, 1826–1839. [Google Scholar] [CrossRef]
- Özcan, O.; Özcan, O. Multi-Temporal UAV Based Repeat Monitoring of Rivers Sensitive to Flood. J. Maps 2020, 17, 163–170. [Google Scholar] [CrossRef]
- Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C.L.; Lejeune, P.; Colinet, G.; Degré, A. Can DEM Time Series Produced by UAV Be Used to Quantify Diffuse Erosion in an Agricultural Watershed? Geomorphology 2017, 280, 122–136. [Google Scholar] [CrossRef]
- Nesbit, P.; Hugenholtz, C.; Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, J.; Macciotta, R.; Hendry, M.T.; Roustaei, M.; Gräpel, C.; Skirrow, R. UAVs for Monitoring, Investigation, and Mitigation Design of a Rock Slope with Multiple Failure Mechanisms—A Case Study. Landslides 2020, 17, 2027–2040. [Google Scholar] [CrossRef]
- Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; Zhang, Z.; Cheng, W.; Gong, C.; Lei, S.; Bian, Z.; Liu, Y.; et al. Analysis of the Development of an Erosion Gully in an Open-Pit Coal Mine Dump during a Winter Freeze-Thaw Cycle by Using Low-Cost UAVs. Remote Sens. 2019, 11, 1356. [Google Scholar] [CrossRef] [Green Version]
- Cucchiaro, S.; Fallu, D.J.; Zhao, P.; Waddington, C.; Cockcroft, D.; Brown, A.G. SfM Photogrammetry for GeoArchaeology. Dev. Earth Surf. Process. 2020, 23, 183–205. [Google Scholar] [CrossRef]
- Kozmus Trajkovski, K.; Grigillo, D.; Petrovič, D. Optimization of UAV Flight Missions in Steep Terrain. Remote Sens. 2020, 12, 1293. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.-H.; Johansen, K.; Aragon, B.; Stutsel, B.M.; Angel, Y.; Camargo, O.A.L.; Al-Mashharawi, S.K.M.; Jiang, J.; Ziliani, M.G.; McCabe, M.F. Combining Nadir, Oblique, and Façade Imagery Enhances Reconstruction of Rock Formations Using Unmanned Aerial Vehicles. IEEE Trans. Geosci. Remote Sens. 2021, 1–13. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-Based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F. Use of UAV-Photogrammetry for Quasi-Vertical Wall Surveying. Remote Sens. 2020, 12, 2221. [Google Scholar] [CrossRef]
- Jaud, M.; Letortu, P.; Théry, C.; Grandjean, P.; Costa, S.; Maquaire, O.; Davidson, R.; le Dantec, N. UAV Survey of a Coastal Cliff Face–Selection of the Best Imaging Angle. Measurement 2019, 139, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Ablanedo, E.; Chandler, J.H.; Ballesteros-Pérez, P.; Rodríguez-Pérez, J.R. Reducing Systematic Dome Errors in Digital Elevation Models through Better UAV Flight Design. Earth Surf. Process. Landf. 2020, 45, 2134–2147. [Google Scholar] [CrossRef]
- Gilham, J.; Barlow, J.; Moore, R. Detection and Analysis of Mass Wasting Events in Chalk Sea Cliffs Using UAV Photogrammetry. Eng. Geol. 2019, 250, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Lim, M.; Hogg, M.; Pound, M.J.; Dunlop, L.; Woodward, J. Cost-Effective Erosion Monitoring of Coastal Cliffs. Coast. Eng. 2018, 138, 152–164. [Google Scholar] [CrossRef]
- Ozturk, H.S.; Kocaman, S.; Gokceoglu, C. A Low-Cost Approach for Determination of Discontinuity Orientation Using Smartphone Images and Application to a Part of Ihlara Valley (Central Turkey). Eng. Geol. 2019, 254, 63–75. [Google Scholar] [CrossRef]
- Menegoni, N.; Giordan, D.; Perotti, C.; Tannant, D.D. Detection and Geometric Characterization of Rock Mass Discontinuities Using a 3D High-Resolution Digital Outcrop Model Generated from RPAS Imagery–Ormea Rock Slope, Italy. Eng. Geol. 2019, 252, 145–163. [Google Scholar] [CrossRef]
- Xiang, J.; Chen, J.; Sofia, G.; Tian, Y.; Tarolli, P. Open-Pit Mine Geomorphic Changes Analysis Using Multi-Temporal UAV Survey. Environ. Earth Sci. 2018, 77, 220. [Google Scholar] [CrossRef]
- Braimbridge, M.; Mackenzie, S.; Lyons, M.; Clarke, T.; Bow, B. Whole-of-Landform Erosion Assessment Using Unmanned Aerial Vehicle Data. In Proceedings of the 13th International Conference on Mine Closure, Perth, Australia, 3–5 September 2019; Fourie, A., Tibbett, M., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2019; pp. 397–406. [Google Scholar]
- Giacomini, A.; Thoeni, K.; Santise, M.; Diotri, F.; Booth, S.; Fityus, S.; Roncella, R. Temporal-Spatial Frequency Rockfall Data from Open-Pit Highwalls Using a Low-Cost Monitoring System. Remote Sens. 2020, 12, 2459. [Google Scholar] [CrossRef]
- Salvini, R.; Mastrorocco, G.; Esposito, G.; di Bartolo, S.; Coggan, J.; Vanneschi, C. Use of a Remotely Piloted Aircraft System for Hazard Assessment in a Rocky Mining Area (Lucca, Italy). Nat. Hazards Earth Syst. Sci. 2018, 18, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Thoeni, K.; Irschara, A.; Giacomini, A. Efficient Photogrammetric Reconstruction of Highwalls in Open Pit Coal Mines. In Proceedings of the 16th Australasian Remote Sensing and Photogrammetry Conference, Melbourne, Australia, August 2012; pp. 85–90. [Google Scholar]
- Ge, L.; Li, X.; Ng, A.H.M. UAV for Mining Applications: A Case Study at an Open-Cut Mine and a Longwall Mine in New South Wales, Australia. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2016; pp. 5422–5425. [Google Scholar]
- Katuruza, M.; Birch, C. The Use of Unmanned Aircraft System Technology for Highwall Mapping at Isibonelo Colliery, South Africa. J. South Afr. Inst. Min. Metall. 2019, 119, 291–295. [Google Scholar] [CrossRef]
- Sayab, M.; Aerden, D.; Paananen, M.; Saarela, P. Virtual Structural Analysis of Jokisivu Open Pit Using ‘Structure-from-Motion’ Unmanned Aerial Vehicles (UAV) Photogrammetry: Implications for Structurally-Controlled Gold Deposits in Southwest Finland. Remote Sens. 2018, 10, 1296. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Saroglou, C.; Wu, F.; Sha, P.; Li, B. Development and Application of UAV-SfM Photogrammetry for Quantitative Characterization of Rock Mass Discontinuities. Int. J. Rock Mech. Min. Sci. 2021, 141, 104729. [Google Scholar] [CrossRef]
- Martín-Moreno, C.; Martín Duque, J.F.; Nicolau Ibarra, J.M.; Muñoz-Martín, A.; Zapico, I. Waste Dump Erosional Landform Stability—A Critical Issue for Mountain Mining. Earth Surf. Process. Landf. 2018, 43, 1431–1450. [Google Scholar] [CrossRef]
- Zapico, I.; Laronne, J.B.; Meixide, C.; Sánchez Castillo, L.; Martín Duque, J.F. Evaluation of Sedimentation Pond Performance for a Cleaner Water Production from an Open Pit Mine at the Edge of the Alto Tajo Natural Park. J. Clean. Prod. 2021, 280, 124408. [Google Scholar] [CrossRef]
- Zapico, I.; Laronne, J.B.; Martín-Moreno, C.; Martín-Duque, J.F.; Ortega, A.; Sánchez-Castillo, L. Baseline to Evaluate Off-site Suspended Sediment-related Mining Effects in the Alto Tajo Natural Park, Spain. Land Degrad. Dev. 2017, 28, 232–242. [Google Scholar] [CrossRef] [Green Version]
- SPH Engineering Ground Station Software|UgCS PC Mission Planning. 2020. Available online: https://www.ugcs.com/photogrammetry-tool-for-land-surveying (accessed on 15 January 2020).
- Agisoft Agisoft Metashape. 2020. Available online: https://www.agisoft.com/downloads/installer/ (accessed on 15 January 2020).
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of Photogrammetric Mapping Accuracy Based on Variation Ground Control Points Number Using Unmanned Aerial Vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- USGS Unmanned Aircraft Systems Data Post-Processing Structure-from-Motion Photogrammetry. 2017. Available online: https://uas.usgs.gov/nupo/pdf/PhotoScanProcessingDSLRMar2017.pdf (accessed on 1 July 2019).
- James, M.R.; Chandler, J.H.; Eltner, A.; Fraser, C.; Miller, P.E.; Mills, J.P.; Noble, T.; Robson, S.; Lane, S.N. Guidelines on the Use of Structure-from-motion Photogrammetry in Geomorphic Research. Earth Surf. Process. Landf. 2019, 44, 2081–2084. [Google Scholar] [CrossRef]
- CloudCompare. Cloud Compare Version 2.6.1. 2015. Available online: https://www.danielgm.net/cc/ (accessed on 8 January 2020).
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D Comparison of Complex Topography with Terrestrial Laser Scanner: Application to the Rangitikei Canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Villarreal, J.C.A.; Rojas, D.J.D.; Ríos, R.C.A. 3D Digital Outcrop Modelling of the Lower Cretaceous Los Santos Formation Sandstones, Mesa de Los Santos Region (Colombia): Implications for Structural Analysis. J. Struct. Geol. 2020, 141, 104214. [Google Scholar] [CrossRef]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A New Approach for Semi-Automatic Rock Mass Joints Recognition from 3D Point Clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef] [Green Version]
- López-Vinielles, J.; Ezquerro, P.; Fernández-Merodo, J.A.; Béjar-Pizarro, M.; Monserrat, O.; Barra, A.; Blanco, P.; García-Robles, J.; Filatov, A.; García-Davalillo, J.C.; et al. Remote Analysis of an Open-Pit Slope Failure: Las Cruces Case Study, Spain. Landslides 2020, 17, 2173–2188. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Rito Gonçalves, G. Surveying Coastal Cliffs Using Two UAV Platforms (Multi-Rotor and Fixedwing) and Three Different Approaches for the Estimation of Volumetric Changes. Int. J. Remote Sens. 2020, 41, 8143–8175. [Google Scholar] [CrossRef]
- Sanz-Ablanedo, E.; Chandler, J.; Rodríguez-Pérez, J.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; Sánchez-Hermosilla López, J.; Mesas-Carrascosa, F.J.; García-Ferrer, A.; Pérez-Porras, F.J. Reconstruction of Extreme Topography from UAV Structure from Motion Photogrammetry. Measurement 2018, 121, 127–138. [Google Scholar] [CrossRef]
- Cabo, C.; Sanz-Ablanedo, E.; Roca-Pardinas, J.; Ordonez, C. Influence of the Number and Spatial Distribution of Ground Control Points in the Accuracy of UAV-SfM DEMs: An Approach Based on Generalized Additive Models. IEEE Trans. Geosci. Remote Sens. 2021, 1–10. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Wallace, L. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Stott, E.; Williams, R.D.; Hoey, T.B. Ground Control Point Distribution for Accurate Kilometre-Scale Topographic Mapping Using an RTK-GNSS Unmanned Aerial Vehicle and SfM Photogrammetry. Drones 2020, 4, 55. [Google Scholar] [CrossRef]
- Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Manzoor, S.; Liaghat, S.; Gustafson, A.; Johansson, D.; Schunnesson, H. Establishing Relationships between Structural Data from Close-Range Terrestrial Digital Photogrammetry and Measurement While Drilling Data. Eng. Geol. 2020, 267, 105480. [Google Scholar] [CrossRef]
- Menegoni, N.; Giordan, D.; Perotti, C. Reliability and Uncertainties of the Analysis of an Unstable Rock Slope Performed on RPAS Digital Outcrop Models: The Case of the Gallivaggio Landslide (Western Alps, Italy). Remote Sens. 2020, 12, 1635. [Google Scholar] [CrossRef]
- Fazio, N.L.; Perrotti, M.; Andriani, G.F.; Mancini, F.; Rossi, P.; Castagnetti, C.; Lollino, P. A New Methodological Approach to Assess the Stability of Discontinuous Rocky Cliffs Using In-Situ Surveys Supported by UAV-Based Techniques and 3-D Finite Element Model: A Case Study. Eng. Geol. 2019, 260, 105205. [Google Scholar] [CrossRef]
- Génie Géologique the Talus Royal Method Website. Available online: http://www.2g.fr/ (accessed on 22 February 2020).
Flight Mission | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|
flight speed (m s−1) | 2 | 2 | 3 | 3 | 3 | 2 | 2 |
flight duration (min) | 29 | 29 | 17 | 17 | 16 | 21 | 25 |
GSD (cm) | 5 | 5 | 1.6 | 1.6 | 2.2 | 1.1 | 1.1 |
forward/side overlap (%) | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
camera angle (°) | nadir | 40 off-n | nadir | 40 off-n | POI | nadir | 40 off-n |
flight type | AMSL | AMSL | AGL | AGL | AGL | facade | facade |
double grid (Y/N) | Y | Y | Y | Y | Y | Y | Y |
number of images | 384 | 380 | 154 | 163 | 97 | 125 | 136 |
Mission/Survey ID: | A | B | C | D | E | F | G | F + G | |
---|---|---|---|---|---|---|---|---|---|
Feature | Unit | ||||||||
number of check points | # | 0 | 10 | 2 | 4 | 10 | 2 | 0 | 4 |
number of control points | # | 14 | 15 | 15 | 15 | 15 | 15 | 12 | 15 |
homogeneously distributed over the area | Y/N | N | Y | N | N | N | Y | N | Y |
time alignment | h | 2.6 | 2.7 | 0.8 | 3.1 | 0.5 | 0.6 | 0.75 | 4 |
time dense point cloud | h | 77 | 22 | 21.5 | 16 | 10.5 | 3 | 9 | 17.5 |
reconstructed surface * | % | 98 | 99 | 80 | 75 | 80 | 100 | 80 | 100 |
number of tie points | # | 579,498 | 394,643 | 445,145 | 368,581 | 283,159 | 603,550 | 529,182 | 848,913 |
dense point cloud density | pts cm−2 | 0.09 | 0.13 | 0.29 | 0.26 | 0.16 | 1.53 | 1.4 | 1.44 |
DEM resolution | cm | 3.3 | 2.8 | 1.9 | 2.0 | 2.5 | 0.8 | 0.9 | 0.8 |
Parameter | A | B | C | D | E | F | G | F + G |
---|---|---|---|---|---|---|---|---|
n check points | 0 | 10 | 2 | 4 | 10 | 2 | 0 | 4 |
Registration of Control Points | ||||||||
MAE x | 3.8 | 3.8 | 3.2 | 1.8 | 4.7 | 1.4 | 1.5 | 1.2 |
MAE y | 4.2 | 3.6 | 2.6 | 2.6 | 2.2 | 1.5 | 1.4 | 1.8 |
MAE z | 6.7 | 5.2 | 3.8 | 3.3 | 3.7 | 1.0 | 1.6 | 1.1 |
MAE all | 9.7 | 8.2 | 6.3 | 5.1 | 7.4 | 2.7 | 3.0 | 2.8 |
RMSE x | 5.4 | 3.8 | 4.6 | 2.5 | 7.3 | 2.2 | 2.1 | 1.4 |
RMSE y | 6.3 | 3.6 | 2.8 | 3.2 | 3.0 | 2.2 | 1.9 | 2.5 |
RMSE z | 9.4 | 5.2 | 5.6 | 4.7 | 4.5 | 1.5 | 1.9 | 1.3 |
RMSE all | 12.6 | 7.8 | 7.8 | 6.2 | 9.1 | 3.5 | 3.4 | 3.1 |
Accuracy of Check Points | ||||||||
MAE x | n/a | 5.6 | 3.7 | 2.6 | 4.6 | 1.9 | n/a | 2.5 |
MAE y | n/a | 2.5 | 5.1 | 1.0 | 2.9 | 0.9 | n/a | 0.5 |
MAE z | n/a | 5.3 | 4.0 | 2.7 | 2.7 | 0.3 | n/a | 1.3 |
MAE all | n/a | 9.2 | 7.8 | 4.1 | 6.6 | 2.2 | n/a | 3.0 |
RMSE x | n/a | 10.3 | 3.8 | 3.3 | 5.4 | 2.4 | n/a | 3.0 |
RMSE y | n/a | 3.6 | 5.5 | 1.2 | 3.9 | 1.1 | n/a | 0.5 |
RMSE z | n/a | 6.5 | 5.5 | 3.1 | 3.6 | 0.3 | n/a | 1.4 |
RMSE all | n/a | 11.8 | 8.6 | 4.7 | 7.6 | 2.7 | n/a | 3.4 |
Final Precision | ||||||||
SD x | n/a | 9.3 | 5.2 | 2.4 | 5.4 | 2.8 | n/a | 2.8 |
SD y | n/a | 3.4 | 2.9 | 1.3 | 3.2 | 0.9 | n/a | 0.6 |
SD z | n/a | 6.8 | 5.6 | 2.0 | 3.4 | 0.2 | n/a | 1.6 |
SD all | n/a | 7.8 | 5.2 | 2.7 | 4.0 | 2.3 | n/a | 1.7 |
Survey | Check Points | TLS |
---|---|---|
A | n/a (0) | 6.4 (276,703) |
B | 7.8 (10) | 5.5 (276,703) |
C | 5.2 (2) | 4.6 (190,941) |
D | 2.7 (4) | 3.1 (276,703) |
E | 4.0 (10) | 3.7 (276,703) |
F | 2.3 (2) | 2.5 (274,265) |
G | n/a (0) | 4.9 (276,703) |
F + G | 1.7 (4) | 2.5 (276,703) |
Flight Setting | AMSL with 40° Off-Nadir Pictures | Facade with Nadir Pictures | |||||||
---|---|---|---|---|---|---|---|---|---|
n° of dip dir | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 5 |
dip dir (°) | 278 | 106 | 234 | 209 | 285 | 296 | 135 | 223 | 262 |
dip (°) | 49 | 88 | 68 | 86 | 50 | 86 | 4 | 78 | 90 |
n° of clusters | 61 | 19 | 57 | 5 | 518 | 478 | 386 | 378 | 415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapico, I.; Laronne, J.B.; Sánchez Castillo, L.; Martín Duque, J.F. Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion. Remote Sens. 2021, 13, 3353. https://doi.org/10.3390/rs13173353
Zapico I, Laronne JB, Sánchez Castillo L, Martín Duque JF. Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion. Remote Sensing. 2021; 13(17):3353. https://doi.org/10.3390/rs13173353
Chicago/Turabian StyleZapico, Ignacio, Jonathan B. Laronne, Lázaro Sánchez Castillo, and José F. Martín Duque. 2021. "Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion" Remote Sensing 13, no. 17: 3353. https://doi.org/10.3390/rs13173353
APA StyleZapico, I., Laronne, J. B., Sánchez Castillo, L., & Martín Duque, J. F. (2021). Improvement of Workflow for Topographic Surveys in Long Highwalls of Open Pit Mines with an Unmanned Aerial Vehicle and Structure from Motion. Remote Sensing, 13(17), 3353. https://doi.org/10.3390/rs13173353