Editorial for the Special Issue “New Advances on Sub-Pixel Processing: Unmixing and Mapping Methods”
Funding
Acknowledgments
Conflicts of Interest
References
- Msellmi, B.; Picone, D.; Ben Rabah, Z.; Dalla Mura, M.; Farah, I.R. Sub-Pixel Mapping Model Based on Total Variation Regularization and Learned Spatial Dictionary. Remote Sens. 2021, 13, 190. [Google Scholar] [CrossRef]
- Kong, L.; Sun, Q.; Mukherjee, M.; Lloret, J. Low-Rank Hypergraph Hashing for Large-Scale Remote Sensing Image Retrieval. Remote Sens. 2020, 12, 1164. [Google Scholar] [CrossRef] [Green Version]
- Prades, J.; Safont, G.; Salazar, A.; Vergara, L. Estimation of the Number of Endmembers in Hyperspectral Images Using Agglomerative Clustering. Remote Sens. 2020, 12, 3585. [Google Scholar] [CrossRef]
- Uezato, T.; Fauvel, M.; Dobigeon, N. Hierarchical Sparse Nonnegative Matrix Factorization for Hyperspectral Unmixing with Spectral Variability. Remote Sens. 2020, 12, 2326. [Google Scholar] [CrossRef]
- Liu, C.; Shi, J.; Liu, X.; Shi, Z.; Zhu, J. Subpixel Mapping of Surface Water in the Tibetan Plateau with MODIS Data. Remote Sens. 2020, 12, 1154. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chen, Y.; Xu, T.; Meng, L.; Huang, C.; Shi, K. Spatial Attraction Models Coupled with Elman Neural Networks for Enhancing Sub-Pixel Urban Inundation Mapping. Remote Sens. 2020, 12, 2068. [Google Scholar] [CrossRef]
- Jia, Y.; Ge, Y.; Chen, Y.; Li, S.; Heuvelink, G.B.M.; Ling, F. Super-Resolution Land Cover Mapping Based on the Convolutional Neural Network. Remote Sens. 2019, 11, 1815. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhang, L.; Zhang, G.; Jin, B.; Leung, H. Multispectral Image Super-Resolution Burned-Area Mapping Based on Space-Temperature Information. Remote Sens. 2019, 11, 2695. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, R.; Foody, G.M.; Wang, L.; Yang, X.; Du, Y.; Ling, F. Spatio-Temporal Sub-Pixel Land Cover Mapping of Remote Sensing Imagery Using Spatial Distribution Information From Same-Class Pixels. Remote Sens. 2020, 12, 503. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, A.; Vergara, L.; Safont, G. Editorial for the Special Issue “New Advances on Sub-Pixel Processing: Unmixing and Mapping Methods”. Remote Sens. 2021, 13, 3807. https://doi.org/10.3390/rs13193807
Salazar A, Vergara L, Safont G. Editorial for the Special Issue “New Advances on Sub-Pixel Processing: Unmixing and Mapping Methods”. Remote Sensing. 2021; 13(19):3807. https://doi.org/10.3390/rs13193807
Chicago/Turabian StyleSalazar, Addisson, Luis Vergara, and Gonzalo Safont. 2021. "Editorial for the Special Issue “New Advances on Sub-Pixel Processing: Unmixing and Mapping Methods”" Remote Sensing 13, no. 19: 3807. https://doi.org/10.3390/rs13193807
APA StyleSalazar, A., Vergara, L., & Safont, G. (2021). Editorial for the Special Issue “New Advances on Sub-Pixel Processing: Unmixing and Mapping Methods”. Remote Sensing, 13(19), 3807. https://doi.org/10.3390/rs13193807