A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance
Abstract
:1. Introduction
2. Background and Definitions
2.1. Absorption
2.2. Scattering
2.3. Similarity Index
3. Materials and Methods
3.1. Training Database of Remote Sensing Reflectance and Normalized Remote Sensing Reflectance without SICF Contribution ()
3.2. Validation Database of Remote Sensing Reflectance and Normalized Remote Sensing Reflectance with and without SICF Contribution ()
3.3. Regression Methods
4. Algorithm Development
Estimation of Normalized Remote-Sensing Reflectance without SICF Contribution () from Normalized Remote-Sensing Reflectance ()
5. Results and Discussion
5.1. Fitting of Normalized Remote-Sensing Reflectance without SICF Contribution ()
5.2. Validation of the Normalized Remote-Sensing Reflectance without SICF Contribution () Estimation
5.3. Validation of Sun Induced Chlorophyll Fluorescence (SICF) Estimation
5.4. Comparison of the Proposed Sun Induced Chlorophyll Fluorescence (SICF) Retrieval Method with the Fluorescence Line Height (FLH) Method
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Behrenfeld, M.J.; Westberry, T.K.; Boss, E.S.; O’Malley, R.T.; Siegel, D.A.; Wiggert, J.D.; Franz, B.A.; McClain, C.R.; Feldman, G.C.; Doney, S.C.; et al. Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton. Biogeosciences 2009, 6, 779–794. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A. Chapter 10—Magic With Colors Sea Surface Changes. In Investigating Seafloors and Oceans; Joseph, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 555–574. ISBN 978-0-12-809357-3. [Google Scholar]
- Ling, Z.; Sun, D.; Wang, S.; Qiu, Z.; Huan, Y.; Mao, Z.; He, Y. Retrievals of Phytoplankton Community Structures from in Situ Fluorescence Measurements by HS-6P. Opt. Express 2018, 26, 30556–30575. [Google Scholar] [CrossRef]
- Huot, Y.; Babin, M. Overview of Fluorescence Protocols: Theory, Basic Concepts, and Practice. In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications; Suggett, J.D., Prášil, O., Borowitzka, A.M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 31–74. ISBN 978-90-481-9268-7. [Google Scholar]
- Gower, J.F.R.; Doerffer, R.; Borstad, G.A. Interpretation of the 685 Nm Peak in Water-Leaving Radiance Spectra in Terms of Fluorescence, Absorption and Scattering, and Its Observation by MERIS. Int. J. Remote Sens. 1999, 20, 1771–1786. [Google Scholar] [CrossRef]
- Maritorena, S.; Morel, A.; Gentili, B. Determination of the Fluorescence Quantum Yield by Oceanic Phytoplankton in Their Natural Habitat. Appl. Opt. 2000, 39, 6725–6737. [Google Scholar] [CrossRef] [PubMed]
- Laney, S.R. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications; Suggett, J.D., Prášil, O., Borowitzka, A.M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 19–30. ISBN 978-90-481-9268-7. [Google Scholar]
- Westberry, T.K.; Behrenfeld, M.J.; Milligan, A.J.; Doney, S.C. Retrospective Satellite Ocean Color Analysis of Purposeful and Natural Ocean Iron Fertilization. Deep Sea Res. Part Oceanogr. Res. Pap. 2013, 73, 1–16. [Google Scholar] [CrossRef]
- Escoffier, N.; Bernard, C.; Hamlaoui, S.; Groleau, A.; Catherine, A. Quantifying Phytoplankton Communities Using Spectral Fluorescence: The Effects of Species Composition and Physiological State. J. Plankton Res. 2014. [Google Scholar] [CrossRef]
- Huot, Y.; Brown, C.A.; Cullen, J.J. New Algorithms for MODIS Sun-Induced Chlorophyll Fluorescence and a Comparison with Present Data Products. Limnol. Oceanogr. Methods 2005, 3, 108–130. [Google Scholar] [CrossRef] [Green Version]
- Huot, Y.; Brown, C.A.; Cullen, J.J. Retrieval of Phytoplankton Biomass from Simultaneous Inversion of Reflectance, the Diffuse Attenuation Coefficient, and Sun-Induced Fluorescence in Coastal Waters. J. Geophys. Res. Oceans 2007, 112, C06013. [Google Scholar] [CrossRef] [Green Version]
- Huot, Y.; Babin, M.; Bruyant, F.; Grob, C.; Twardowski, M.S.; Claustre, H. Relationship between Photosynthetic Parameters and Different Proxies of Phytoplankton Biomass in the Subtropical Ocean. Biogeosciences 2007, 4, 853–868. [Google Scholar] [CrossRef] [Green Version]
- Abbott, M.R.; Letelier, R.M. Algorithm Theoretical Basis Document Chlorophyll Fluorescence (MODIS Product Number 20); NASA: Corvallis, OR, USA, 1999. [Google Scholar]
- Kolber, Z.; Falkowski, P.G. Use of Active Fluorescence to Estimate Phytoplankton Photosynthesis in Situ. Limnol. Oceanogr. 1993, 38, 1646–1665. [Google Scholar] [CrossRef]
- Lin, H.; Kuzminov, F.I.; Park, J.; Lee, S.; Falkowski, P.G.; Gorbunov, M.Y. The Fate of Photons Absorbed by Phytoplankton in the Global Ocean. Science 2016, 351, 264–267. [Google Scholar] [CrossRef] [PubMed]
- Neville, R.A.; Gower, J.F.R. Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence. J. Geophys. Res. 1977, 82, 3487–3493. [Google Scholar] [CrossRef]
- Babin, M.; Morel, A.; Gentili, B. Remote Sensing of Sea Surface Sun-Induced Chlorophyll Fluorescence: Consequences of Natural Variations in the Optical Characteristics of Phytoplankton and the Quantum Yield of Chlorophyll a Fluorescence. Int. J. Remote Sens. 1996, 17, 2417–2448. [Google Scholar] [CrossRef]
- Gower, J.F.R.; Borstad, G.A. On the Potential of MODIS and MERIS for Imaging Chlorophyll Fluorescence from Space. Int. J. Remote Sens. 2004, 25, 1459–1464. [Google Scholar] [CrossRef]
- Letelier, R.M.; Abbott, M.R. An Analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS). Remote Sens. Environ. 1996, 58, 215–223. [Google Scholar] [CrossRef]
- Zhao, D.; Xing, X.; Liu, Y.; Yang, J.; Wang, L. The Relation of Chlorophyll-a Concentration with the Reflectance Peak near 700 Nm in Algae-Dominated Waters and Sensitivity of Fluorescence Algorithms for Detecting Algal Bloom. Int. J. Remote Sens. 2010, 31, 39–48. [Google Scholar] [CrossRef]
- Gower, J.F.R.; Brown, L.; Borstad, G.A. Observation of Chlorophyll Fluorescence in West Coast Waters of Canada Using the MODIS Satellite Sensor. Can. J. Remote Sens. 2004, 30, 17–25. [Google Scholar] [CrossRef]
- Gilerson, A.; Zhou, J.; Oo, M.; Chowdhary, J.; Gross, B.M.; Moshary, F.; Ahmed, S. Retrieval of Chlorophyll Fluorescence from Reflectance Spectra through Polarization Discrimination: Modeling and Experiments. Appl. Opt. 2006, 45, 5568–5581. [Google Scholar] [CrossRef]
- Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Schalles, J.; Gross, B.; Moshary, F.; Ahmed, S. Fluorescence Component in the Reflectance Spectra from Coastal Waters. Dependence on Water Composition. Opt. Express 2007, 15, 15702–15721. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote Chlorophyll-a Retrieval in Turbid, Productive Estuaries: Chesapeake Bay Case Study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Zhou, J.; Gilerson, A.; Ioannou, I.; Hlaing, S.; Schalles, J.; Gross, B.; Moshary, F.; Ahmed, S. Retrieving Quantum Yield of Sun-Induced Chlorophyll Fluorescence near Surface from Hyperspectral in-Situ Measurement in Productive Water. Opt. Express 2008, 16, 17468–17483. [Google Scholar] [CrossRef] [PubMed]
- Gilerson, A.A.; Huot, Y. Chapter 7—Bio-optical Modeling of Sun-Induced Chlorophyll-a Fluorescence. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Mishra, D.R., Ogashawara, I., Gitelson, A.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 189–231. ISBN 978-0-12-804644-9. [Google Scholar]
- Drusch, M.; Moreno, J.; Bello, U.D.; Franco, R.; Goulas, Y.; Huth, A.; Kraft, S.; Middleton, E.M.; Miglietta, F.; Mohammed, G.; et al. The FLuorescence EXplorer Mission Concept-ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1273–1284. [Google Scholar] [CrossRef]
- Nieke, J.; Rast, M. Towards the Copernicus Hyperspectral Imaging Mission For The Environment (CHIME). In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 157–159. [Google Scholar]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.-J.; Moore, G. Seaborne Measurements of near Infrared Water-Leaving Reflectance: The Similarity Spectrum for Turbid Waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Pope, R.M.; Fry, E.S. Absorption Spectrum (380-700 Nm) of Pure Water. II. Integrating Cavity Measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains1. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Morel, A. Optical Modeling of the Upper Ocean in Relation to Its Biogenous Matter Content (Case I Waters). J. Geophys. Res. Oceans 1988, 93, 10749–10768. [Google Scholar] [CrossRef] [Green Version]
- Prieur, L.; Sathyendranath, S. An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials1. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Mobley, C.D. HydroLight 4.0 Technical Documentation; Sequoia Scientific, Inc.: Mercer Island, WA, USA, 2008. [Google Scholar]
- Boss, E.; Twardowski, M.S.; Herring, S. Shape of the Particulate Beam Attenuation Spectrum and Its Inversion to Obtainthe Shape of the Particulate Size Distribution. Appl. Opt. 2001, 40, 4885–4893. [Google Scholar] [CrossRef]
- Loisel, H.; Morel, A. Light Scattering and Chlorophyll Concentration in Case 1 Waters: A Reexamination. Limnol. Oceanogr. 1998, 43, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Doxaran, D.; Ruddick, K.; McKee, D.; Gentili, B.; Tailliez, D.; Chami, M.; Babin, M. Spectral Variations of Light Scattering by Marine Particles in Coastal Waters, from the Visible to the near Infrared. Limnol. Oceanogr. 2009, 54, 1257–1271. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D.; Sundman, L.K.; Boss, E. Phase Function Effects on Oceanic Light Fields. Appl. Opt. 2002, 41, 1035–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, D.; Cunningham, A.; Wright, D.; Hay, L. Potential Impacts of Nonalgal Materials on Water-Leaving Sun Induced Chlorophyll Fluorescence Signals in Coastal Waters. Appl. Opt. 2007, 46, 7720–7729. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Doxaran, D.; Babin, M.; Leymarie, E. Near-Infrared Light Scattering by Particles in Coastal Waters. Opt. Express 2007, 15, 12834–12849. [Google Scholar] [CrossRef] [PubMed]
- Sipelgas, L.; Raudsepp, U. Comparison of Hyperspectral Measurements of the Attenuation and Scattering Coefficients Spectra with Modeling Results in the North-Eastern Baltic Sea. Estuar. Coast. Shelf Sci. 2015, 165, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y. Proprietes Optiques Des Particules Biologiques et Minerales. Ph.D. Thesis, Universite Pierre et Marie Curie, Paris, France, 1999. [Google Scholar]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, A.S.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gilerson, A.; Zhou, J.; Hlaing, S.; Ioannou, I.; Gross, B.; Moshary, F.; Ahmed, S. Fluorescence Component in the Reflectance Spectra from Coastal Waters. II. Performance of Retrieval Algorithms. Opt. Express 2008, 16, 2446–2460. [Google Scholar] [CrossRef]
- Fournier, G.R.; Forand, J.L. Analytic Phase Function for Ocean Water. In Proceedings of the SPIE—The International Society for Optical Engineering: Ocean Optics XII, Bergen, Norway, 26 October 1994; Volume 2258, pp. 194–201. [Google Scholar]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Rivera-Caicedo, J.P.; Verrelst, J.; Muñoz-Marí, J.; Moreno, J.; Camps-Valls, G. Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine Learning Regression Algorithms for Biophysical Parameter Retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural Network Estimation of LAI, FAPAR, FCover and LAI×Cab, from Top of Canopy MERIS Reflectance Data: Principles and Validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Borchani, H.; Varando, G.; Bielza, C.; Larrañaga, P. A Survey on Multi-Output Regression. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2015, 5, 216–233. [Google Scholar] [CrossRef] [Green Version]
- Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Camps-Valls, G.; Munoz-Mari, J.; Gomez-Chova, L.; Guanter, L.; Calbet, X. Nonlinear Statistical Retrieval of Atmospheric Profiles From MetOp-IASI and MTG-IRS Infrared Sounding Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1759–1769. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006; ISBN 0-262-18253-X. [Google Scholar]
- Camps-Valls, G.; Bruzzone, L.; Rojo-Alvarez, J.L.; Melgani, F. Robust Support Vector Regression for Biophysical Variable Estimation from Remotely Sensed Images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 339–343. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
Parameter | Units | Value | Reference |
---|---|---|---|
m−1 | 0.00, 0.01, 0.20, 0.50, 2.00, 5.00 | [41] | |
[Chla] | mg·m−3 | 0.01, 0.02, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 5.0, 10.00, 15.00, 20.00, 30.00 | [41] |
m | - | 0, 0.5, 1, 1.5 | [42,43] |
- | 0.0001, 0.001, 0.01, 0.1,0.4 | [39] | |
SZA | degrees | 0, 30, 50, 70 | - |
Parameter | Units | Range of Values/Classes | Reference |
---|---|---|---|
m−1 | 0.001–9.75 | [41] | |
[Chla] | mg·m−3 | 0.009–30 | [41] |
[NAP] | g·m−3 | 0–13.5 | [23,40] |
Type of NAP | - | Brown earth, yellow clay, calcareous sand, red clay, mixed Bukata | [44,45] |
Discrete phase function | - | avgpart, isotrop, Case Small, Case Large, Petzold clear, coastal and harbor, FFbb001 to FFbb500 (for 0.01% to 50% backscatter fraction) | [32,47,48] |
ϕSICF | 0.001–0.02 | [25,46] | |
SZA | degrees | 1–79 |
MLRA | R2 | RMSE | RRMSE | Training Time (s) | Testing Time (s) |
---|---|---|---|---|---|
KRR | 0.99 | 0.10 | 0.02 | 19,241 | 0.004 |
GPR | 0.97 | 0.20 | 0.05 | 61,732 | 0.002 |
SVR | 0.99 | 0.09 | 0.02 | 519,335 | 0.014 |
NN | 0.99 | 0.10 | 0.02 | 73,891 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenjo, C.; Ruiz-Verdú, A.; Van Wittenberghe, S.; Delegido, J.; Moreno, J. A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance. Remote Sens. 2021, 13, 329. https://doi.org/10.3390/rs13020329
Tenjo C, Ruiz-Verdú A, Van Wittenberghe S, Delegido J, Moreno J. A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance. Remote Sensing. 2021; 13(2):329. https://doi.org/10.3390/rs13020329
Chicago/Turabian StyleTenjo, Carolina, Antonio Ruiz-Verdú, Shari Van Wittenberghe, Jesús Delegido, and José Moreno. 2021. "A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance" Remote Sensing 13, no. 2: 329. https://doi.org/10.3390/rs13020329
APA StyleTenjo, C., Ruiz-Verdú, A., Van Wittenberghe, S., Delegido, J., & Moreno, J. (2021). A New Algorithm for the Retrieval of Sun Induced Chlorophyll Fluorescence of Water Bodies Exploiting the Detailed Spectral Shape of Water-Leaving Radiance. Remote Sensing, 13(2), 329. https://doi.org/10.3390/rs13020329